Copy array texture layers from host visible buffer instead of linear image (Refs #140), only use one copy if all array layer dimensions are equal

This commit is contained in:
saschawillems 2016-05-14 12:19:18 +02:00
parent c7a0d67448
commit d3e1718f28

View file

@ -135,108 +135,116 @@ public:
textureArray.height = tex2DArray.dimensions().y; textureArray.height = tex2DArray.dimensions().y;
layerCount = tex2DArray.layers(); layerCount = tex2DArray.layers();
// Get device properites for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { textureArray.width, textureArray.height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs; VkMemoryRequirements memReqs;
struct Layer { // Create a host-visible staging buffer that contains the raw image data
VkImage image; VkBuffer stagingBuffer;
VkDeviceMemory memory; VkDeviceMemory stagingMemory;
};
std::vector<Layer> arrayLayer;
arrayLayer.resize(layerCount);
// Allocate command buffer for image copies and layouts VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo();
VkCommandBuffer cmdBuffer; bufferCreateInfo.size = tex2DArray.size();
VkCommandBufferAllocateInfo cmdBufAlllocatInfo = // This buffer is used as a transfer source for the buffer copy
vkTools::initializers::commandBufferAllocateInfo( bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
cmdPool, bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult err = vkAllocateCommandBuffers(device, &cmdBufAlllocatInfo, &cmdBuffer);
assert(!err);
VkCommandBufferBeginInfo cmdBufInfo = vkTools::checkResult(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
vkTools::initializers::commandBufferBeginInfo();
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo); // Get memory requirements for the staging buffer (alignment, memory type bits)
assert(!err); vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
// Load separate cube map faces into linear tiled textures memAllocInfo.allocationSize = memReqs.size;
for (uint32_t i = 0; i < layerCount; ++i) // Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
vkTools::checkResult(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
vkTools::checkResult(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
vkTools::checkResult(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, tex2DArray.data(), tex2DArray.size());
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for array layers
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
// Check if all array layers have the same dimesions
bool sameDims = true;
for (uint32_t layer = 0; layer < layerCount; layer++)
{ {
err = vkCreateImage(device, &imageCreateInfo, nullptr, &arrayLayer[i].image); if (tex2DArray[layer].dimensions().x != textureArray.width || tex2DArray[layer].dimensions().y != textureArray.height)
assert(!err); {
sameDims = false;
vkGetImageMemoryRequirements(device, arrayLayer[i].image, &memReqs); break;
memAllocInfo.allocationSize = memReqs.size; }
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &arrayLayer[i].memory);
assert(!err);
err = vkBindImageMemory(device, arrayLayer[i].image, arrayLayer[i].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, arrayLayer[i].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, arrayLayer[i].memory, 0, memReqs.size, 0, &data);
assert(!err);
memcpy(data, tex2DArray[i].data(), tex2DArray[i].size());
vkUnmapMemory(device, arrayLayer[i].memory);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
vkTools::setImageLayout(
cmdBuffer,
arrayLayer[i].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
} }
// Transfer cube map faces to optimal tiling // If all layers of the texture array have the same dimensions, we only need to do one copy
if (sameDims)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = layerCount;
bufferCopyRegion.imageExtent.width = tex2DArray[0].dimensions().x;
bufferCopyRegion.imageExtent.height = tex2DArray[0].dimensions().y;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
// Setup texture as blit target with optimal tiling bufferCopyRegions.push_back(bufferCopyRegion);
}
else
{
// If dimensions differ, copy layer by layer and pass offsets
for (uint32_t layer = 0; layer < layerCount; layer++)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = 0;
bufferCopyRegion.imageSubresource.baseArrayLayer = layer;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = tex2DArray[layer].dimensions().x;
bufferCopyRegion.imageExtent.height = tex2DArray[layer].dimensions().y;
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
offset += tex2DArray[layer].size();
}
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { textureArray.width, textureArray.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.arrayLayers = layerCount; imageCreateInfo.arrayLayers = layerCount;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &textureArray.image); VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &textureArray.image));
assert(!err);
vkGetImageMemoryRequirements(device, textureArray.image, &memReqs); vkGetImageMemoryRequirements(device, textureArray.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size; memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &textureArray.deviceMemory));
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &textureArray.deviceMemory); VK_CHECK_RESULT(vkBindImageMemory(device, textureArray.image, textureArray.deviceMemory, 0));
assert(!err);
err = vkBindImageMemory(device, textureArray.image, textureArray.deviceMemory, 0); VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
assert(!err);
// Image barrier for optimal image (target) // Image barrier for optimal image (target)
// Set initial layout for all array layers of the optimal (target) tiled texture // Set initial layout for all array layers (faces) of the optimal (target) tiled texture
VkImageSubresourceRange subresourceRange = {}; VkImageSubresourceRange subresourceRange = {};
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresourceRange.baseMipLevel = 0; subresourceRange.baseMipLevel = 0;
@ -244,68 +252,34 @@ public:
subresourceRange.layerCount = layerCount; subresourceRange.layerCount = layerCount;
vkTools::setImageLayout( vkTools::setImageLayout(
cmdBuffer, copyCmd,
textureArray.image, textureArray.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange); subresourceRange);
// Copy cube map faces one by one // Copy the cube map faces from the staging buffer to the optimal tiled image
for (uint32_t i = 0; i < layerCount; ++i) vkCmdCopyBufferToImage(
{ copyCmd,
// Copy region for image blit stagingBuffer,
VkImageCopy copyRegion = {}; textureArray.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
bufferCopyRegions.size(),
bufferCopyRegions.data()
);
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; // Change texture image layout to shader read after all faces have been copied
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = i;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = textureArray.width;
copyRegion.extent.height = textureArray.height;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(
cmdBuffer,
arrayLayer[i].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
textureArray.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
}
// Change texture image layout to shader read after all layers have been copied
textureArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; textureArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout( vkTools::setImageLayout(
cmdBuffer, copyCmd,
textureArray.image, textureArray.image,
VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
textureArray.imageLayout, textureArray.imageLayout,
subresourceRange); subresourceRange);
err = vkEndCommandBuffer(cmdBuffer); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
// Submit command buffer to graphis queue
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Create sampler // Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
@ -321,27 +295,21 @@ public:
sampler.minLod = 0.0f; sampler.minLod = 0.0f;
sampler.maxLod = 0.0f; sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &textureArray.sampler); VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &textureArray.sampler));
assert(!err);
// Create image view // Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
view.format = format; view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.subresourceRange.layerCount = layerCount; view.subresourceRange.layerCount = layerCount;
view.image = textureArray.image; view.image = textureArray.image;
err = vkCreateImageView(device, &view, nullptr, &textureArray.view); VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &textureArray.view));
assert(!err);
// Cleanup // Clean up staging resources
for (auto& layer : arrayLayer) vkFreeMemory(device, stagingMemory, nullptr);
{ vkDestroyBuffer(device, stagingBuffer, nullptr);
vkDestroyImage(device, layer.image, nullptr);
vkFreeMemory(device, layer.memory, nullptr);
}
} }
void loadTextures() void loadTextures()
@ -375,23 +343,14 @@ public:
// Set target frame buffer // Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i]; renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport( VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
(float)width,
(float)height,
0.0f,
1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D( VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
width,
height,
0,
0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
@ -405,18 +364,14 @@ public:
vkCmdEndRenderPass(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
assert(!err);
} }
} }
void draw() void draw()
{ {
VkResult err;
// Get next image in the swap chain (back/front buffer) // Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer); VK_CHECK_RESULT(swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer));
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
@ -425,16 +380,13 @@ public:
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue // Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); VK_CHECK_RESULT(swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete));
assert(!err);
err = vkQueueWaitIdle(queue); VK_CHECK_RESULT(vkQueueWaitIdle(queue));
assert(!err);
} }
// Setup vertices for a single uv-mapped quad // Setup vertices for a single uv-mapped quad
@ -518,8 +470,7 @@ public:
poolSizes.data(), poolSizes.data(),
2); 2);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
assert(!vkRes);
} }
void setupDescriptorSetLayout() void setupDescriptorSetLayout()
@ -543,16 +494,14 @@ public:
setLayoutBindings.data(), setLayoutBindings.data(),
setLayoutBindings.size()); setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo( vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout, &descriptorSetLayout,
1); 1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
assert(!err);
} }
void setupDescriptorSet() void setupDescriptorSet()
@ -563,8 +512,7 @@ public:
&descriptorSetLayout, &descriptorSetLayout,
1); 1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
assert(!vkRes);
// Image descriptor for the texture array // Image descriptor for the texture array
VkDescriptorImageInfo texArrayDescriptor = VkDescriptorImageInfo texArrayDescriptor =
@ -665,8 +613,7 @@ public:
pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.pStages = shaderStages.data();
VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
assert(!err);
} }
void prepareUniformBuffers() void prepareUniformBuffers()
@ -702,8 +649,7 @@ public:
uint8_t *pData; uint8_t *pData;
uint32_t dataOffset = sizeof(uboVS.matrices); uint32_t dataOffset = sizeof(uboVS.matrices);
uint32_t dataSize = layerCount * sizeof(UboInstanceData); uint32_t dataSize = layerCount * sizeof(UboInstanceData);
err = vkMapMemory(device, uniformData.vertexShader.memory, dataOffset, dataSize, 0, (void **)&pData); VK_CHECK_RESULT(vkMapMemory(device, uniformData.vertexShader.memory, dataOffset, dataSize, 0, (void **)&pData));
assert(!err);
memcpy(pData, uboVS.instance, dataSize); memcpy(pData, uboVS.instance, dataSize);
vkUnmapMemory(device, uniformData.vertexShader.memory); vkUnmapMemory(device, uniformData.vertexShader.memory);
@ -725,8 +671,7 @@ public:
// Only update the matrices part of the uniform buffer // Only update the matrices part of the uniform buffer
uint8_t *pData; uint8_t *pData;
VkResult err = vkMapMemory(device, uniformData.vertexShader.memory, 0, sizeof(uboVS.matrices), 0, (void **)&pData); VK_CHECK_RESULT(vkMapMemory(device, uniformData.vertexShader.memory, 0, sizeof(uboVS.matrices), 0, (void **)&pData));
assert(!err);
memcpy(pData, &uboVS.matrices, sizeof(uboVS.matrices)); memcpy(pData, &uboVS.matrices, sizeof(uboVS.matrices));
vkUnmapMemory(device, uniformData.vertexShader.memory); vkUnmapMemory(device, uniformData.vertexShader.memory);
} }