Replace ASSIMP with glTF
Initial version of mesh loading and rendering example withouth ASSIMP (mainly due to Android build woes)
This commit is contained in:
parent
3763e001dc
commit
d50a5d0f40
1 changed files with 393 additions and 279 deletions
|
|
@ -1,11 +1,20 @@
|
||||||
/*
|
/*
|
||||||
* Vulkan Example - Model loading and rendering
|
* Vulkan Example - Model loading and rendering
|
||||||
*
|
*
|
||||||
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
* Copyright (C) 2016-2020 by Sascha Willems - www.saschawillems.de
|
||||||
*
|
*
|
||||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Shows how to load and display a simple mesh from a glTF file
|
||||||
|
* Note that this isn't a complete glTF loader and only basic functions are shown here
|
||||||
|
* This means only linear nodes (no parent<->child tree), no animations, no skins, etc.
|
||||||
|
* For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
|
||||||
|
*
|
||||||
|
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
|
||||||
|
*/
|
||||||
|
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
|
@ -18,16 +27,15 @@
|
||||||
#include <glm/gtc/matrix_transform.hpp>
|
#include <glm/gtc/matrix_transform.hpp>
|
||||||
#include <glm/gtc/type_ptr.hpp>
|
#include <glm/gtc/type_ptr.hpp>
|
||||||
|
|
||||||
#include <assimp/Importer.hpp>
|
#define TINYGLTF_IMPLEMENTATION
|
||||||
#include <assimp/scene.h>
|
#define STB_IMAGE_IMPLEMENTATION
|
||||||
#include <assimp/postprocess.h>
|
#define TINYGLTF_NO_STB_IMAGE_WRITE
|
||||||
#include <assimp/cimport.h>
|
#include "tiny_gltf.h"
|
||||||
|
|
||||||
#include <vulkan/vulkan.h>
|
#include <vulkan/vulkan.h>
|
||||||
#include "vulkanexamplebase.h"
|
#include "vulkanexamplebase.h"
|
||||||
#include "VulkanTexture.hpp"
|
#include "VulkanTexture.hpp"
|
||||||
|
|
||||||
#define VERTEX_BUFFER_BIND_ID 0
|
|
||||||
#define ENABLE_VALIDATION false
|
#define ENABLE_VALIDATION false
|
||||||
|
|
||||||
class VulkanExample : public VulkanExampleBase
|
class VulkanExample : public VulkanExampleBase
|
||||||
|
|
@ -39,12 +47,6 @@ public:
|
||||||
vks::Texture2D colorMap;
|
vks::Texture2D colorMap;
|
||||||
} textures;
|
} textures;
|
||||||
|
|
||||||
struct {
|
|
||||||
VkPipelineVertexInputStateCreateInfo inputState;
|
|
||||||
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
|
||||||
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
|
||||||
} vertices;
|
|
||||||
|
|
||||||
// Vertex layout used in this example
|
// Vertex layout used in this example
|
||||||
// This must fit input locations of the vertex shader used to render the model
|
// This must fit input locations of the vertex shader used to render the model
|
||||||
struct Vertex {
|
struct Vertex {
|
||||||
|
|
@ -54,9 +56,33 @@ public:
|
||||||
glm::vec3 color;
|
glm::vec3 color;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct ModelNode;
|
||||||
|
|
||||||
|
// Represents a single mesh-based node in the glTF scene graph
|
||||||
|
// This is simplified as much as possible to make this sample easy to understand
|
||||||
|
struct ModelNode {
|
||||||
|
ModelNode* parent;
|
||||||
|
uint32_t firstIndex;
|
||||||
|
uint32_t indexCount;
|
||||||
|
glm::mat4 matrix;
|
||||||
|
std::vector<ModelNode> children;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Represents a glTF material used to access e.g. the texture to choose for a mesh
|
||||||
|
// Only includes the most basic properties required for this sample
|
||||||
|
struct ModelMaterial {
|
||||||
|
glm::vec4 baseColorFactor = glm::vec4(1.0f);
|
||||||
|
uint32_t baseColorTextureIndex;
|
||||||
|
};
|
||||||
|
|
||||||
// Contains all Vulkan resources required to represent vertex and index buffers for a model
|
// Contains all Vulkan resources required to represent vertex and index buffers for a model
|
||||||
// This is for demonstration and learning purposes, the other examples use a model loader class for easy access
|
// This is for demonstration and learning purposes, the other examples use a model loader class for easy access
|
||||||
struct Model {
|
struct Model {
|
||||||
|
std::vector<vks::Texture2D> images;
|
||||||
|
// Textures in glTF are indices used by material to select an image (and optionally samplers)
|
||||||
|
std::vector<uint32_t> textures;
|
||||||
|
std::vector<ModelMaterial> materials;
|
||||||
|
std::vector<ModelNode> nodes;
|
||||||
struct {
|
struct {
|
||||||
VkBuffer buffer;
|
VkBuffer buffer;
|
||||||
VkDeviceMemory memory;
|
VkDeviceMemory memory;
|
||||||
|
|
@ -157,16 +183,16 @@ public:
|
||||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||||
|
|
||||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||||
|
|
||||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||||
|
|
||||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||||
|
|
||||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
||||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
|
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
|
||||||
|
|
||||||
|
drawglTFModel(drawCmdBuffers[i]);
|
||||||
|
|
||||||
|
/*
|
||||||
VkDeviceSize offsets[1] = { 0 };
|
VkDeviceSize offsets[1] = { 0 };
|
||||||
// Bind mesh vertex buffer
|
// Bind mesh vertex buffer
|
||||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &model.vertices.buffer, offsets);
|
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &model.vertices.buffer, offsets);
|
||||||
|
|
@ -174,240 +200,357 @@ public:
|
||||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||||
// Render mesh vertex buffer using its indices
|
// Render mesh vertex buffer using its indices
|
||||||
vkCmdDrawIndexed(drawCmdBuffers[i], model.indices.count, 1, 0, 0, 0);
|
vkCmdDrawIndexed(drawCmdBuffers[i], model.indices.count, 1, 0, 0, 0);
|
||||||
|
*/
|
||||||
|
|
||||||
drawUI(drawCmdBuffers[i]);
|
drawUI(drawCmdBuffers[i]);
|
||||||
|
|
||||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||||
|
|
||||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Load a model from file using the ASSIMP model loader and generate all resources required to render the model
|
void drawglTFNode(VkCommandBuffer commandBuffer, ModelNode node)
|
||||||
void loadModel(std::string filename)
|
|
||||||
{
|
{
|
||||||
// Load the model from file using ASSIMP
|
if (node.indexCount > 0) {
|
||||||
|
vkCmdDrawIndexed(commandBuffer, node.indexCount, 1, node.firstIndex, 0, 0);
|
||||||
|
}
|
||||||
|
for (auto& child : node.children) {
|
||||||
|
drawglTFNode(commandBuffer, child);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
const aiScene* scene;
|
void drawglTFModel(VkCommandBuffer commandBuffer)
|
||||||
Assimp::Importer Importer;
|
{
|
||||||
|
// All vertices and indices are stored in single buffers, so we only need to bind once
|
||||||
|
VkDeviceSize offsets[1] = { 0 };
|
||||||
|
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &model.vertices.buffer, offsets);
|
||||||
|
vkCmdBindIndexBuffer(commandBuffer, model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||||
|
for (auto& node : model.nodes) {
|
||||||
|
drawglTFNode(commandBuffer, node);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Flags for loading the mesh
|
/*
|
||||||
static const int assimpFlags = aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_PreTransformVertices;
|
Load images from the glTF file
|
||||||
|
Textures can be stored inside the glTF (which is the case for the sample model), so instead of directly
|
||||||
|
loading them from disk, we fetch them from the glTF loader and upload the buffers
|
||||||
|
*/
|
||||||
|
void loadglTFImages(tinygltf::Model& glTFModel)
|
||||||
|
{
|
||||||
|
model.images.resize(glTFModel.images.size());
|
||||||
|
for (size_t i = 0; i < glTFModel.images.size(); i++) {
|
||||||
|
tinygltf::Image& glTFImage = glTFModel.images[i];
|
||||||
|
// Get the image data from the glTF loader
|
||||||
|
unsigned char* buffer = nullptr;
|
||||||
|
VkDeviceSize bufferSize = 0;
|
||||||
|
bool deleteBuffer = false;
|
||||||
|
// We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan
|
||||||
|
if (glTFImage.component == 3) {
|
||||||
|
bufferSize = glTFImage.width * glTFImage.height * 4;
|
||||||
|
buffer = new unsigned char[bufferSize];
|
||||||
|
unsigned char* rgba = buffer;
|
||||||
|
unsigned char* rgb = &glTFImage.image[0];
|
||||||
|
for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) {
|
||||||
|
for (int32_t j = 0; j < 3; ++j) {
|
||||||
|
rgba[j] = rgb[j];
|
||||||
|
}
|
||||||
|
rgba += 4;
|
||||||
|
rgb += 3;
|
||||||
|
}
|
||||||
|
deleteBuffer = true;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
buffer = &glTFImage.image[0];
|
||||||
|
bufferSize = glTFImage.image.size();
|
||||||
|
}
|
||||||
|
model.images[i].fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, queue);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
Load texture information
|
||||||
|
These nodes store the index of the image used by a material that sources this texture
|
||||||
|
*/
|
||||||
|
void loadglTFTextures(tinygltf::Model& glTFModel)
|
||||||
|
{
|
||||||
|
model.textures.resize(glTFModel.textures.size());
|
||||||
|
for (size_t i = 0; i < glTFModel.textures.size(); i++) {
|
||||||
|
model.textures[i] = glTFModel.textures[i].source;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
Load Materials from the glTF file
|
||||||
|
Materials contain basic properties like colors and references to the textures used by that material
|
||||||
|
We only read the most basic properties required for our sample
|
||||||
|
*/
|
||||||
|
void loadglTFMaterials(const tinygltf::Model& glTFModel)
|
||||||
|
{
|
||||||
|
model.materials.resize(glTFModel.materials.size());
|
||||||
|
for (size_t i = 0; i < glTFModel.materials.size(); i++) {
|
||||||
|
tinygltf::Material glTFMaterial = glTFModel.materials[i];
|
||||||
|
// Get the base color factor
|
||||||
|
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
|
||||||
|
model.materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
|
||||||
|
}
|
||||||
|
// Get base color texture index
|
||||||
|
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
|
||||||
|
model.materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Load a single glTF node
|
||||||
|
// glTF scenes are made up of nodes that contain mesh data
|
||||||
|
// This is the most basic way of loading a glTF node that ignores parent->child relations and nested matrices
|
||||||
|
void loadglTFNode(ModelNode* parent, const tinygltf::Node& glTFNode, const tinygltf::Model& glTFModel, std::vector<uint32_t>& indexBuffer, std::vector<Vertex>& vertexBuffer)
|
||||||
|
{
|
||||||
|
ModelNode node{};
|
||||||
|
node.matrix = glm::mat4(1.0f);
|
||||||
|
|
||||||
|
// Get the local node matrix
|
||||||
|
// It's either made up from translation, rotation, scale or a 4x4 matrix
|
||||||
|
if (glTFNode.translation.size() == 3) {
|
||||||
|
node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(glTFNode.translation.data())));
|
||||||
|
}
|
||||||
|
if (glTFNode.rotation.size() == 4) {
|
||||||
|
glm::quat q = glm::make_quat(glTFNode.rotation.data());
|
||||||
|
node.matrix *= glm::mat4(q);
|
||||||
|
}
|
||||||
|
if (glTFNode.scale.size() == 3) {
|
||||||
|
node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(glTFNode.translation.data())));
|
||||||
|
}
|
||||||
|
if (glTFNode.matrix.size() == 16) {
|
||||||
|
node.matrix = glm::make_mat4x4(glTFNode.matrix.data());
|
||||||
|
};
|
||||||
|
|
||||||
|
// Load node's children
|
||||||
|
if (glTFNode.children.size() > 0) {
|
||||||
|
for (size_t i = 0; i < glTFNode.children.size(); i++) {
|
||||||
|
loadglTFNode(&node, glTFModel.nodes[glTFNode.children[i]], glTFModel, indexBuffer, vertexBuffer);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the node contains mesh data, we load vertices and indices from the the buffers
|
||||||
|
// In glTF this is done via accessors and buffer views
|
||||||
|
if (glTFNode.mesh > -1) {
|
||||||
|
const tinygltf::Mesh mesh = glTFModel.meshes[glTFNode.mesh];
|
||||||
|
uint32_t indexStart = static_cast<uint32_t>(indexBuffer.size());
|
||||||
|
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
|
||||||
|
uint32_t indexCount = 0;
|
||||||
|
// Iterate through all primitives of this node's mesh
|
||||||
|
for (size_t i = 0; i < mesh.primitives.size(); i++) {
|
||||||
|
const tinygltf::Primitive& primitive = mesh.primitives[i];
|
||||||
|
// Vertices
|
||||||
|
{
|
||||||
|
const float* positionBuffer = nullptr;
|
||||||
|
const float* normalsBuffer = nullptr;
|
||||||
|
const float* texCoordsBuffer = nullptr;
|
||||||
|
size_t vertexCount = 0;
|
||||||
|
|
||||||
|
// Get buffer data for vertex normals
|
||||||
|
if (primitive.attributes.find("POSITION") != primitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.attributes.find("POSITION")->second];
|
||||||
|
const tinygltf::BufferView& view = glTFModel.bufferViews[accessor.bufferView];
|
||||||
|
positionBuffer = reinterpret_cast<const float*>(&(glTFModel.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
vertexCount = accessor.count;
|
||||||
|
}
|
||||||
|
// Get buffer data for vertex normals
|
||||||
|
if (primitive.attributes.find("NORMAL") != primitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.attributes.find("NORMAL")->second];
|
||||||
|
const tinygltf::BufferView& view = glTFModel.bufferViews[accessor.bufferView];
|
||||||
|
normalsBuffer = reinterpret_cast<const float*>(&(glTFModel.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
}
|
||||||
|
// Get buffer data for vertex texture coordinates
|
||||||
|
// glTF supports multiple sets, we only load the first one
|
||||||
|
if (primitive.attributes.find("TEXCOORD_0") != primitive.attributes.end()) {
|
||||||
|
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.attributes.find("TEXCOORD_0")->second];
|
||||||
|
const tinygltf::BufferView& view = glTFModel.bufferViews[accessor.bufferView];
|
||||||
|
texCoordsBuffer = reinterpret_cast<const float*>(&(glTFModel.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Append data to model's vertex buffer
|
||||||
|
for (size_t v = 0; v < vertexCount; v++) {
|
||||||
|
Vertex vert{};
|
||||||
|
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
|
||||||
|
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
|
||||||
|
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
|
||||||
|
vertexBuffer.push_back(vert);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Indices
|
||||||
|
{
|
||||||
|
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.indices];
|
||||||
|
const tinygltf::BufferView& bufferView = glTFModel.bufferViews[accessor.bufferView];
|
||||||
|
const tinygltf::Buffer& buffer = glTFModel.buffers[bufferView.buffer];
|
||||||
|
|
||||||
|
indexCount += static_cast<uint32_t>(accessor.count);
|
||||||
|
|
||||||
|
switch (accessor.componentType) {
|
||||||
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
|
||||||
|
uint32_t* buf = new uint32_t[accessor.count];
|
||||||
|
memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint32_t));
|
||||||
|
for (size_t index = 0; index < accessor.count; index++) {
|
||||||
|
indexBuffer.push_back(buf[index] + vertexStart);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
|
||||||
|
uint16_t* buf = new uint16_t[accessor.count];
|
||||||
|
memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint16_t));
|
||||||
|
for (size_t index = 0; index < accessor.count; index++) {
|
||||||
|
indexBuffer.push_back(buf[index] + vertexStart);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
|
||||||
|
uint8_t* buf = new uint8_t[accessor.count];
|
||||||
|
memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint8_t));
|
||||||
|
for (size_t index = 0; index < accessor.count; index++) {
|
||||||
|
indexBuffer.push_back(buf[index] + vertexStart);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
node.firstIndex = indexStart;
|
||||||
|
node.indexCount = indexCount;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parent) {
|
||||||
|
parent->children.push_back(node);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
model.nodes.push_back(node);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// @todo
|
||||||
|
void loadglTF(std::string filename)
|
||||||
|
{
|
||||||
|
tinygltf::Model gltfModel;
|
||||||
|
tinygltf::TinyGLTF gltfContext;
|
||||||
|
std::string error, warning;
|
||||||
|
|
||||||
|
this->device = device;
|
||||||
|
|
||||||
#if defined(__ANDROID__)
|
#if defined(__ANDROID__)
|
||||||
// Meshes are stored inside the apk on Android (compressed)
|
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
|
||||||
// So they need to be loaded via the asset manager
|
|
||||||
|
|
||||||
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
||||||
assert(asset);
|
assert(asset);
|
||||||
size_t size = AAsset_getLength(asset);
|
size_t size = AAsset_getLength(asset);
|
||||||
|
|
||||||
assert(size > 0);
|
assert(size > 0);
|
||||||
|
char* fileData = new char[size];
|
||||||
void *meshData = malloc(size);
|
AAsset_read(asset, fileData, size);
|
||||||
AAsset_read(asset, meshData, size);
|
|
||||||
AAsset_close(asset);
|
AAsset_close(asset);
|
||||||
|
std::string baseDir;
|
||||||
scene = Importer.ReadFileFromMemory(meshData, size, assimpFlags);
|
bool fileLoaded = gltfContext.LoadASCIIFromString(&gltfModel, &error, &warning, fileData, size, baseDir);
|
||||||
|
free(fileData);
|
||||||
free(meshData);
|
|
||||||
#else
|
#else
|
||||||
scene = Importer.ReadFile(filename.c_str(), assimpFlags);
|
bool fileLoaded = gltfContext.LoadASCIIFromFile(&gltfModel, &error, &warning, filename);
|
||||||
#endif
|
#endif
|
||||||
|
std::vector<uint32_t> indexBuffer;
|
||||||
// Generate vertex buffer from ASSIMP scene data
|
|
||||||
float scale = 1.0f;
|
|
||||||
std::vector<Vertex> vertexBuffer;
|
std::vector<Vertex> vertexBuffer;
|
||||||
|
|
||||||
// Iterate through all meshes in the file and extract the vertex components
|
if (fileLoaded) {
|
||||||
for (uint32_t m = 0; m < scene->mNumMeshes; m++)
|
loadglTFImages(gltfModel);
|
||||||
{
|
loadglTFMaterials(gltfModel);
|
||||||
for (uint32_t v = 0; v < scene->mMeshes[m]->mNumVertices; v++)
|
loadglTFTextures(gltfModel);
|
||||||
{
|
const tinygltf::Scene& scene = gltfModel.scenes[0];
|
||||||
Vertex vertex;
|
for (size_t i = 0; i < scene.nodes.size(); i++) {
|
||||||
|
const tinygltf::Node node = gltfModel.nodes[scene.nodes[i]];
|
||||||
// Use glm make_* functions to convert ASSIMP vectors to glm vectors
|
loadglTFNode(nullptr, node, gltfModel, indexBuffer, vertexBuffer);
|
||||||
vertex.pos = glm::make_vec3(&scene->mMeshes[m]->mVertices[v].x) * scale;
|
|
||||||
vertex.normal = glm::make_vec3(&scene->mMeshes[m]->mNormals[v].x);
|
|
||||||
// Texture coordinates and colors may have multiple channels, we only use the first [0] one
|
|
||||||
vertex.uv = glm::make_vec2(&scene->mMeshes[m]->mTextureCoords[0][v].x);
|
|
||||||
// Mesh may not have vertex colors
|
|
||||||
vertex.color = (scene->mMeshes[m]->HasVertexColors(0)) ? glm::make_vec3(&scene->mMeshes[m]->mColors[0][v].r) : glm::vec3(1.0f);
|
|
||||||
|
|
||||||
// Vulkan uses a right-handed NDC (contrary to OpenGL), so simply flip Y-Axis
|
|
||||||
vertex.pos.y *= -1.0f;
|
|
||||||
|
|
||||||
vertexBuffer.push_back(vertex);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
else {
|
||||||
|
// TODO: throw
|
||||||
|
std::cerr << "Could not load gltf file: " << error << std::endl;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
size_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
|
size_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
|
||||||
|
|
||||||
// Generate index buffer from ASSIMP scene data
|
|
||||||
std::vector<uint32_t> indexBuffer;
|
|
||||||
for (uint32_t m = 0; m < scene->mNumMeshes; m++)
|
|
||||||
{
|
|
||||||
uint32_t indexBase = static_cast<uint32_t>(indexBuffer.size());
|
|
||||||
for (uint32_t f = 0; f < scene->mMeshes[m]->mNumFaces; f++)
|
|
||||||
{
|
|
||||||
// We assume that all faces are triangulated
|
|
||||||
for (uint32_t i = 0; i < 3; i++)
|
|
||||||
{
|
|
||||||
indexBuffer.push_back(scene->mMeshes[m]->mFaces[f].mIndices[i] + indexBase);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
||||||
model.indices.count = static_cast<uint32_t>(indexBuffer.size());
|
model.indices.count = static_cast<uint32_t>(indexBuffer.size());
|
||||||
|
|
||||||
// Static mesh should always be device local
|
//assert((vertexBufferSize > 0) && (indexBufferSize > 0));
|
||||||
|
|
||||||
bool useStaging = true;
|
struct StagingBuffer {
|
||||||
|
VkBuffer buffer;
|
||||||
|
VkDeviceMemory memory;
|
||||||
|
} vertexStaging, indexStaging;
|
||||||
|
|
||||||
if (useStaging)
|
// Create staging buffers
|
||||||
{
|
// Vertex data
|
||||||
struct {
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||||
VkBuffer buffer;
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
||||||
VkDeviceMemory memory;
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||||
} vertexStaging, indexStaging;
|
vertexBufferSize,
|
||||||
|
&vertexStaging.buffer,
|
||||||
|
&vertexStaging.memory,
|
||||||
|
vertexBuffer.data()));
|
||||||
|
// Index data
|
||||||
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||||
|
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
||||||
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||||
|
indexBufferSize,
|
||||||
|
&indexStaging.buffer,
|
||||||
|
&indexStaging.memory,
|
||||||
|
indexBuffer.data()));
|
||||||
|
|
||||||
// Create staging buffers
|
// Create device local buffers
|
||||||
// Vertex data
|
// Vertex buffer
|
||||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||||
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
||||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
||||||
vertexBufferSize,
|
vertexBufferSize,
|
||||||
&vertexStaging.buffer,
|
&model.vertices.buffer,
|
||||||
&vertexStaging.memory,
|
&model.vertices.memory));
|
||||||
vertexBuffer.data()));
|
// Index buffer
|
||||||
// Index data
|
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
||||||
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
|
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
||||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
indexBufferSize,
|
||||||
indexBufferSize,
|
&model.indices.buffer,
|
||||||
&indexStaging.buffer,
|
&model.indices.memory));
|
||||||
&indexStaging.memory,
|
|
||||||
indexBuffer.data()));
|
|
||||||
|
|
||||||
// Create device local buffers
|
// Copy data from staging buffers (host) do device local buffer (gpu)
|
||||||
// Vertex buffer
|
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
||||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
||||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
||||||
vertexBufferSize,
|
|
||||||
&model.vertices.buffer,
|
|
||||||
&model.vertices.memory));
|
|
||||||
// Index buffer
|
|
||||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
||||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
|
|
||||||
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
|
|
||||||
indexBufferSize,
|
|
||||||
&model.indices.buffer,
|
|
||||||
&model.indices.memory));
|
|
||||||
|
|
||||||
// Copy from staging buffers
|
VkBufferCopy copyRegion = {};
|
||||||
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
|
||||||
|
|
||||||
VkBufferCopy copyRegion = {};
|
copyRegion.size = vertexBufferSize;
|
||||||
|
vkCmdCopyBuffer(
|
||||||
|
copyCmd,
|
||||||
|
vertexStaging.buffer,
|
||||||
|
model.vertices.buffer,
|
||||||
|
1,
|
||||||
|
©Region);
|
||||||
|
|
||||||
copyRegion.size = vertexBufferSize;
|
copyRegion.size = indexBufferSize;
|
||||||
vkCmdCopyBuffer(
|
vkCmdCopyBuffer(
|
||||||
copyCmd,
|
copyCmd,
|
||||||
vertexStaging.buffer,
|
indexStaging.buffer,
|
||||||
model.vertices.buffer,
|
model.indices.buffer,
|
||||||
1,
|
1,
|
||||||
©Region);
|
©Region);
|
||||||
|
|
||||||
copyRegion.size = indexBufferSize;
|
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
||||||
vkCmdCopyBuffer(
|
|
||||||
copyCmd,
|
|
||||||
indexStaging.buffer,
|
|
||||||
model.indices.buffer,
|
|
||||||
1,
|
|
||||||
©Region);
|
|
||||||
|
|
||||||
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
|
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
|
||||||
|
vkFreeMemory(device, vertexStaging.memory, nullptr);
|
||||||
vkDestroyBuffer(device, vertexStaging.buffer, nullptr);
|
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
||||||
vkFreeMemory(device, vertexStaging.memory, nullptr);
|
vkFreeMemory(device, indexStaging.memory, nullptr);
|
||||||
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
|
||||||
vkFreeMemory(device, indexStaging.memory, nullptr);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
// Vertex buffer
|
|
||||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
||||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
|
||||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
||||||
vertexBufferSize,
|
|
||||||
&model.vertices.buffer,
|
|
||||||
&model.vertices.memory,
|
|
||||||
vertexBuffer.data()));
|
|
||||||
// Index buffer
|
|
||||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
|
||||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
|
||||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
|
||||||
indexBufferSize,
|
|
||||||
&model.indices.buffer,
|
|
||||||
&model.indices.memory,
|
|
||||||
indexBuffer.data()));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void loadAssets()
|
void loadAssets()
|
||||||
{
|
{
|
||||||
loadModel(getAssetPath() + "models/voyager/voyager.dae");
|
loadglTF(getAssetPath() + "models/voyager/voyager.gltf");
|
||||||
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_rgba_unorm.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_rgba_unorm.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
||||||
}
|
}
|
||||||
|
|
||||||
void setupVertexDescriptions()
|
|
||||||
{
|
|
||||||
// Binding description
|
|
||||||
vertices.bindingDescriptions.resize(1);
|
|
||||||
vertices.bindingDescriptions[0] =
|
|
||||||
vks::initializers::vertexInputBindingDescription(
|
|
||||||
VERTEX_BUFFER_BIND_ID,
|
|
||||||
sizeof(Vertex),
|
|
||||||
VK_VERTEX_INPUT_RATE_VERTEX);
|
|
||||||
|
|
||||||
// Attribute descriptions
|
|
||||||
// Describes memory layout and shader positions
|
|
||||||
vertices.attributeDescriptions.resize(4);
|
|
||||||
// Location 0 : Position
|
|
||||||
vertices.attributeDescriptions[0] =
|
|
||||||
vks::initializers::vertexInputAttributeDescription(
|
|
||||||
VERTEX_BUFFER_BIND_ID,
|
|
||||||
0,
|
|
||||||
VK_FORMAT_R32G32B32_SFLOAT,
|
|
||||||
offsetof(Vertex, pos));
|
|
||||||
// Location 1 : Normal
|
|
||||||
vertices.attributeDescriptions[1] =
|
|
||||||
vks::initializers::vertexInputAttributeDescription(
|
|
||||||
VERTEX_BUFFER_BIND_ID,
|
|
||||||
1,
|
|
||||||
VK_FORMAT_R32G32B32_SFLOAT,
|
|
||||||
offsetof(Vertex, normal));
|
|
||||||
// Location 2 : Texture coordinates
|
|
||||||
vertices.attributeDescriptions[2] =
|
|
||||||
vks::initializers::vertexInputAttributeDescription(
|
|
||||||
VERTEX_BUFFER_BIND_ID,
|
|
||||||
2,
|
|
||||||
VK_FORMAT_R32G32_SFLOAT,
|
|
||||||
offsetof(Vertex, uv));
|
|
||||||
// Location 3 : Color
|
|
||||||
vertices.attributeDescriptions[3] =
|
|
||||||
vks::initializers::vertexInputAttributeDescription(
|
|
||||||
VERTEX_BUFFER_BIND_ID,
|
|
||||||
3,
|
|
||||||
VK_FORMAT_R32G32B32_SFLOAT,
|
|
||||||
offsetof(Vertex, color));
|
|
||||||
|
|
||||||
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
|
||||||
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
|
||||||
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
|
||||||
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
|
||||||
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
|
||||||
}
|
|
||||||
|
|
||||||
void setupDescriptorPool()
|
void setupDescriptorPool()
|
||||||
{
|
{
|
||||||
// Example uses one ubo and one combined image sampler
|
// Example uses one ubo and one combined image sampler
|
||||||
|
|
@ -473,84 +616,56 @@ public:
|
||||||
|
|
||||||
void preparePipelines()
|
void preparePipelines()
|
||||||
{
|
{
|
||||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||||
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
|
||||||
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||||
0,
|
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
|
||||||
VK_FALSE);
|
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||||
|
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||||
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||||
vks::initializers::pipelineRasterizationStateCreateInfo(
|
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||||
VK_POLYGON_MODE_FILL,
|
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
|
||||||
VK_CULL_MODE_BACK_BIT,
|
// Vertex input bindings and attributes
|
||||||
VK_FRONT_FACE_CLOCKWISE,
|
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
|
||||||
0);
|
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||||
|
|
||||||
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
|
||||||
vks::initializers::pipelineColorBlendAttachmentState(
|
|
||||||
0xf,
|
|
||||||
VK_FALSE);
|
|
||||||
|
|
||||||
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
|
||||||
vks::initializers::pipelineColorBlendStateCreateInfo(
|
|
||||||
1,
|
|
||||||
&blendAttachmentState);
|
|
||||||
|
|
||||||
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
|
||||||
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
|
||||||
VK_TRUE,
|
|
||||||
VK_TRUE,
|
|
||||||
VK_COMPARE_OP_LESS_OR_EQUAL);
|
|
||||||
|
|
||||||
VkPipelineViewportStateCreateInfo viewportState =
|
|
||||||
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
|
||||||
|
|
||||||
VkPipelineMultisampleStateCreateInfo multisampleState =
|
|
||||||
vks::initializers::pipelineMultisampleStateCreateInfo(
|
|
||||||
VK_SAMPLE_COUNT_1_BIT,
|
|
||||||
0);
|
|
||||||
|
|
||||||
std::vector<VkDynamicState> dynamicStateEnables = {
|
|
||||||
VK_DYNAMIC_STATE_VIEWPORT,
|
|
||||||
VK_DYNAMIC_STATE_SCISSOR
|
|
||||||
};
|
};
|
||||||
VkPipelineDynamicStateCreateInfo dynamicState =
|
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
||||||
vks::initializers::pipelineDynamicStateCreateInfo(
|
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 0: Position
|
||||||
dynamicStateEnables.data(),
|
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)), // Location 1: Normal
|
||||||
static_cast<uint32_t>(dynamicStateEnables.size()),
|
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, uv)), // Location 2: Texture coordinates
|
||||||
0);
|
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)), // Location 3: Color
|
||||||
|
};
|
||||||
|
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||||
|
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
||||||
|
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
|
||||||
|
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
||||||
|
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
||||||
|
|
||||||
|
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
||||||
|
loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
||||||
|
loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
|
||||||
|
};
|
||||||
|
|
||||||
|
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||||
|
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
||||||
|
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
||||||
|
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
||||||
|
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
||||||
|
pipelineCI.pMultisampleState = &multisampleStateCI;
|
||||||
|
pipelineCI.pViewportState = &viewportStateCI;
|
||||||
|
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
||||||
|
pipelineCI.pDynamicState = &dynamicStateCI;
|
||||||
|
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||||
|
pipelineCI.pStages = shaderStages.data();
|
||||||
|
|
||||||
// Solid rendering pipeline
|
// Solid rendering pipeline
|
||||||
// Load shaders
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
|
||||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
|
||||||
|
|
||||||
shaderStages[0] = loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
|
||||||
shaderStages[1] = loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
|
||||||
|
|
||||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
|
||||||
vks::initializers::pipelineCreateInfo(
|
|
||||||
pipelineLayout,
|
|
||||||
renderPass,
|
|
||||||
0);
|
|
||||||
|
|
||||||
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
|
||||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
|
||||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
|
||||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
|
||||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
|
||||||
pipelineCreateInfo.pViewportState = &viewportState;
|
|
||||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
|
||||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
|
||||||
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
|
||||||
pipelineCreateInfo.pStages = shaderStages.data();
|
|
||||||
|
|
||||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
|
|
||||||
|
|
||||||
// Wire frame rendering pipeline
|
// Wire frame rendering pipeline
|
||||||
if (deviceFeatures.fillModeNonSolid) {
|
if (deviceFeatures.fillModeNonSolid) {
|
||||||
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
|
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
|
||||||
rasterizationState.lineWidth = 1.0f;
|
rasterizationStateCI.lineWidth = 1.0f;
|
||||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe));
|
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -601,7 +716,6 @@ public:
|
||||||
{
|
{
|
||||||
VulkanExampleBase::prepare();
|
VulkanExampleBase::prepare();
|
||||||
loadAssets();
|
loadAssets();
|
||||||
setupVertexDescriptions();
|
|
||||||
prepareUniformBuffers();
|
prepareUniformBuffers();
|
||||||
setupDescriptorSetLayout();
|
setupDescriptorSetLayout();
|
||||||
preparePipelines();
|
preparePipelines();
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue