Replace ASSIMP with glTF
Initial version of mesh loading and rendering example withouth ASSIMP (mainly due to Android build woes)
This commit is contained in:
parent
3763e001dc
commit
d50a5d0f40
1 changed files with 393 additions and 279 deletions
|
|
@ -1,11 +1,20 @@
|
|||
/*
|
||||
* Vulkan Example - Model loading and rendering
|
||||
*
|
||||
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
||||
* Copyright (C) 2016-2020 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
/*
|
||||
* Shows how to load and display a simple mesh from a glTF file
|
||||
* Note that this isn't a complete glTF loader and only basic functions are shown here
|
||||
* This means only linear nodes (no parent<->child tree), no animations, no skins, etc.
|
||||
* For details on how glTF 2.0 works, see the official spec at https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
|
||||
*
|
||||
* If you are looking for a complete glTF implementation, check out https://github.com/SaschaWillems/Vulkan-glTF-PBR/
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
|
@ -18,16 +27,15 @@
|
|||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
#include <assimp/Importer.hpp>
|
||||
#include <assimp/scene.h>
|
||||
#include <assimp/postprocess.h>
|
||||
#include <assimp/cimport.h>
|
||||
#define TINYGLTF_IMPLEMENTATION
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#define TINYGLTF_NO_STB_IMAGE_WRITE
|
||||
#include "tiny_gltf.h"
|
||||
|
||||
#include <vulkan/vulkan.h>
|
||||
#include "vulkanexamplebase.h"
|
||||
#include "VulkanTexture.hpp"
|
||||
|
||||
#define VERTEX_BUFFER_BIND_ID 0
|
||||
#define ENABLE_VALIDATION false
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
|
|
@ -39,12 +47,6 @@ public:
|
|||
vks::Texture2D colorMap;
|
||||
} textures;
|
||||
|
||||
struct {
|
||||
VkPipelineVertexInputStateCreateInfo inputState;
|
||||
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
||||
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
||||
} vertices;
|
||||
|
||||
// Vertex layout used in this example
|
||||
// This must fit input locations of the vertex shader used to render the model
|
||||
struct Vertex {
|
||||
|
|
@ -54,9 +56,33 @@ public:
|
|||
glm::vec3 color;
|
||||
};
|
||||
|
||||
struct ModelNode;
|
||||
|
||||
// Represents a single mesh-based node in the glTF scene graph
|
||||
// This is simplified as much as possible to make this sample easy to understand
|
||||
struct ModelNode {
|
||||
ModelNode* parent;
|
||||
uint32_t firstIndex;
|
||||
uint32_t indexCount;
|
||||
glm::mat4 matrix;
|
||||
std::vector<ModelNode> children;
|
||||
};
|
||||
|
||||
// Represents a glTF material used to access e.g. the texture to choose for a mesh
|
||||
// Only includes the most basic properties required for this sample
|
||||
struct ModelMaterial {
|
||||
glm::vec4 baseColorFactor = glm::vec4(1.0f);
|
||||
uint32_t baseColorTextureIndex;
|
||||
};
|
||||
|
||||
// Contains all Vulkan resources required to represent vertex and index buffers for a model
|
||||
// This is for demonstration and learning purposes, the other examples use a model loader class for easy access
|
||||
struct Model {
|
||||
std::vector<vks::Texture2D> images;
|
||||
// Textures in glTF are indices used by material to select an image (and optionally samplers)
|
||||
std::vector<uint32_t> textures;
|
||||
std::vector<ModelMaterial> materials;
|
||||
std::vector<ModelNode> nodes;
|
||||
struct {
|
||||
VkBuffer buffer;
|
||||
VkDeviceMemory memory;
|
||||
|
|
@ -157,16 +183,16 @@ public:
|
|||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid);
|
||||
|
||||
drawglTFModel(drawCmdBuffers[i]);
|
||||
|
||||
/*
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
// Bind mesh vertex buffer
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &model.vertices.buffer, offsets);
|
||||
|
|
@ -174,98 +200,284 @@ public:
|
|||
vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
// Render mesh vertex buffer using its indices
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], model.indices.count, 1, 0, 0, 0);
|
||||
*/
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
// Load a model from file using the ASSIMP model loader and generate all resources required to render the model
|
||||
void loadModel(std::string filename)
|
||||
void drawglTFNode(VkCommandBuffer commandBuffer, ModelNode node)
|
||||
{
|
||||
// Load the model from file using ASSIMP
|
||||
if (node.indexCount > 0) {
|
||||
vkCmdDrawIndexed(commandBuffer, node.indexCount, 1, node.firstIndex, 0, 0);
|
||||
}
|
||||
for (auto& child : node.children) {
|
||||
drawglTFNode(commandBuffer, child);
|
||||
}
|
||||
}
|
||||
|
||||
const aiScene* scene;
|
||||
Assimp::Importer Importer;
|
||||
void drawglTFModel(VkCommandBuffer commandBuffer)
|
||||
{
|
||||
// All vertices and indices are stored in single buffers, so we only need to bind once
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &model.vertices.buffer, offsets);
|
||||
vkCmdBindIndexBuffer(commandBuffer, model.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
for (auto& node : model.nodes) {
|
||||
drawglTFNode(commandBuffer, node);
|
||||
}
|
||||
}
|
||||
|
||||
// Flags for loading the mesh
|
||||
static const int assimpFlags = aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_PreTransformVertices;
|
||||
/*
|
||||
Load images from the glTF file
|
||||
Textures can be stored inside the glTF (which is the case for the sample model), so instead of directly
|
||||
loading them from disk, we fetch them from the glTF loader and upload the buffers
|
||||
*/
|
||||
void loadglTFImages(tinygltf::Model& glTFModel)
|
||||
{
|
||||
model.images.resize(glTFModel.images.size());
|
||||
for (size_t i = 0; i < glTFModel.images.size(); i++) {
|
||||
tinygltf::Image& glTFImage = glTFModel.images[i];
|
||||
// Get the image data from the glTF loader
|
||||
unsigned char* buffer = nullptr;
|
||||
VkDeviceSize bufferSize = 0;
|
||||
bool deleteBuffer = false;
|
||||
// We convert RGB-only images to RGBA, as most devices don't support RGB-formats in Vulkan
|
||||
if (glTFImage.component == 3) {
|
||||
bufferSize = glTFImage.width * glTFImage.height * 4;
|
||||
buffer = new unsigned char[bufferSize];
|
||||
unsigned char* rgba = buffer;
|
||||
unsigned char* rgb = &glTFImage.image[0];
|
||||
for (size_t i = 0; i < glTFImage.width * glTFImage.height; ++i) {
|
||||
for (int32_t j = 0; j < 3; ++j) {
|
||||
rgba[j] = rgb[j];
|
||||
}
|
||||
rgba += 4;
|
||||
rgb += 3;
|
||||
}
|
||||
deleteBuffer = true;
|
||||
}
|
||||
else {
|
||||
buffer = &glTFImage.image[0];
|
||||
bufferSize = glTFImage.image.size();
|
||||
}
|
||||
model.images[i].fromBuffer(buffer, bufferSize, VK_FORMAT_R8G8B8A8_UNORM, glTFImage.width, glTFImage.height, vulkanDevice, queue);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Load texture information
|
||||
These nodes store the index of the image used by a material that sources this texture
|
||||
*/
|
||||
void loadglTFTextures(tinygltf::Model& glTFModel)
|
||||
{
|
||||
model.textures.resize(glTFModel.textures.size());
|
||||
for (size_t i = 0; i < glTFModel.textures.size(); i++) {
|
||||
model.textures[i] = glTFModel.textures[i].source;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Load Materials from the glTF file
|
||||
Materials contain basic properties like colors and references to the textures used by that material
|
||||
We only read the most basic properties required for our sample
|
||||
*/
|
||||
void loadglTFMaterials(const tinygltf::Model& glTFModel)
|
||||
{
|
||||
model.materials.resize(glTFModel.materials.size());
|
||||
for (size_t i = 0; i < glTFModel.materials.size(); i++) {
|
||||
tinygltf::Material glTFMaterial = glTFModel.materials[i];
|
||||
// Get the base color factor
|
||||
if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) {
|
||||
model.materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data());
|
||||
}
|
||||
// Get base color texture index
|
||||
if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) {
|
||||
model.materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Load a single glTF node
|
||||
// glTF scenes are made up of nodes that contain mesh data
|
||||
// This is the most basic way of loading a glTF node that ignores parent->child relations and nested matrices
|
||||
void loadglTFNode(ModelNode* parent, const tinygltf::Node& glTFNode, const tinygltf::Model& glTFModel, std::vector<uint32_t>& indexBuffer, std::vector<Vertex>& vertexBuffer)
|
||||
{
|
||||
ModelNode node{};
|
||||
node.matrix = glm::mat4(1.0f);
|
||||
|
||||
// Get the local node matrix
|
||||
// It's either made up from translation, rotation, scale or a 4x4 matrix
|
||||
if (glTFNode.translation.size() == 3) {
|
||||
node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(glTFNode.translation.data())));
|
||||
}
|
||||
if (glTFNode.rotation.size() == 4) {
|
||||
glm::quat q = glm::make_quat(glTFNode.rotation.data());
|
||||
node.matrix *= glm::mat4(q);
|
||||
}
|
||||
if (glTFNode.scale.size() == 3) {
|
||||
node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(glTFNode.translation.data())));
|
||||
}
|
||||
if (glTFNode.matrix.size() == 16) {
|
||||
node.matrix = glm::make_mat4x4(glTFNode.matrix.data());
|
||||
};
|
||||
|
||||
// Load node's children
|
||||
if (glTFNode.children.size() > 0) {
|
||||
for (size_t i = 0; i < glTFNode.children.size(); i++) {
|
||||
loadglTFNode(&node, glTFModel.nodes[glTFNode.children[i]], glTFModel, indexBuffer, vertexBuffer);
|
||||
}
|
||||
}
|
||||
|
||||
// If the node contains mesh data, we load vertices and indices from the the buffers
|
||||
// In glTF this is done via accessors and buffer views
|
||||
if (glTFNode.mesh > -1) {
|
||||
const tinygltf::Mesh mesh = glTFModel.meshes[glTFNode.mesh];
|
||||
uint32_t indexStart = static_cast<uint32_t>(indexBuffer.size());
|
||||
uint32_t vertexStart = static_cast<uint32_t>(vertexBuffer.size());
|
||||
uint32_t indexCount = 0;
|
||||
// Iterate through all primitives of this node's mesh
|
||||
for (size_t i = 0; i < mesh.primitives.size(); i++) {
|
||||
const tinygltf::Primitive& primitive = mesh.primitives[i];
|
||||
// Vertices
|
||||
{
|
||||
const float* positionBuffer = nullptr;
|
||||
const float* normalsBuffer = nullptr;
|
||||
const float* texCoordsBuffer = nullptr;
|
||||
size_t vertexCount = 0;
|
||||
|
||||
// Get buffer data for vertex normals
|
||||
if (primitive.attributes.find("POSITION") != primitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.attributes.find("POSITION")->second];
|
||||
const tinygltf::BufferView& view = glTFModel.bufferViews[accessor.bufferView];
|
||||
positionBuffer = reinterpret_cast<const float*>(&(glTFModel.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
vertexCount = accessor.count;
|
||||
}
|
||||
// Get buffer data for vertex normals
|
||||
if (primitive.attributes.find("NORMAL") != primitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.attributes.find("NORMAL")->second];
|
||||
const tinygltf::BufferView& view = glTFModel.bufferViews[accessor.bufferView];
|
||||
normalsBuffer = reinterpret_cast<const float*>(&(glTFModel.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
}
|
||||
// Get buffer data for vertex texture coordinates
|
||||
// glTF supports multiple sets, we only load the first one
|
||||
if (primitive.attributes.find("TEXCOORD_0") != primitive.attributes.end()) {
|
||||
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.attributes.find("TEXCOORD_0")->second];
|
||||
const tinygltf::BufferView& view = glTFModel.bufferViews[accessor.bufferView];
|
||||
texCoordsBuffer = reinterpret_cast<const float*>(&(glTFModel.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset]));
|
||||
}
|
||||
|
||||
// Append data to model's vertex buffer
|
||||
for (size_t v = 0; v < vertexCount; v++) {
|
||||
Vertex vert{};
|
||||
vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f);
|
||||
vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)));
|
||||
vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f);
|
||||
vertexBuffer.push_back(vert);
|
||||
}
|
||||
}
|
||||
// Indices
|
||||
{
|
||||
const tinygltf::Accessor& accessor = glTFModel.accessors[primitive.indices];
|
||||
const tinygltf::BufferView& bufferView = glTFModel.bufferViews[accessor.bufferView];
|
||||
const tinygltf::Buffer& buffer = glTFModel.buffers[bufferView.buffer];
|
||||
|
||||
indexCount += static_cast<uint32_t>(accessor.count);
|
||||
|
||||
switch (accessor.componentType) {
|
||||
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: {
|
||||
uint32_t* buf = new uint32_t[accessor.count];
|
||||
memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint32_t));
|
||||
for (size_t index = 0; index < accessor.count; index++) {
|
||||
indexBuffer.push_back(buf[index] + vertexStart);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: {
|
||||
uint16_t* buf = new uint16_t[accessor.count];
|
||||
memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint16_t));
|
||||
for (size_t index = 0; index < accessor.count; index++) {
|
||||
indexBuffer.push_back(buf[index] + vertexStart);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: {
|
||||
uint8_t* buf = new uint8_t[accessor.count];
|
||||
memcpy(buf, &buffer.data[accessor.byteOffset + bufferView.byteOffset], accessor.count * sizeof(uint8_t));
|
||||
for (size_t index = 0; index < accessor.count; index++) {
|
||||
indexBuffer.push_back(buf[index] + vertexStart);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
node.firstIndex = indexStart;
|
||||
node.indexCount = indexCount;
|
||||
}
|
||||
|
||||
if (parent) {
|
||||
parent->children.push_back(node);
|
||||
}
|
||||
else {
|
||||
model.nodes.push_back(node);
|
||||
}
|
||||
}
|
||||
|
||||
// @todo
|
||||
void loadglTF(std::string filename)
|
||||
{
|
||||
tinygltf::Model gltfModel;
|
||||
tinygltf::TinyGLTF gltfContext;
|
||||
std::string error, warning;
|
||||
|
||||
this->device = device;
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
// Meshes are stored inside the apk on Android (compressed)
|
||||
// So they need to be loaded via the asset manager
|
||||
|
||||
// On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager
|
||||
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
||||
assert(asset);
|
||||
size_t size = AAsset_getLength(asset);
|
||||
|
||||
assert(size > 0);
|
||||
|
||||
void *meshData = malloc(size);
|
||||
AAsset_read(asset, meshData, size);
|
||||
char* fileData = new char[size];
|
||||
AAsset_read(asset, fileData, size);
|
||||
AAsset_close(asset);
|
||||
|
||||
scene = Importer.ReadFileFromMemory(meshData, size, assimpFlags);
|
||||
|
||||
free(meshData);
|
||||
std::string baseDir;
|
||||
bool fileLoaded = gltfContext.LoadASCIIFromString(&gltfModel, &error, &warning, fileData, size, baseDir);
|
||||
free(fileData);
|
||||
#else
|
||||
scene = Importer.ReadFile(filename.c_str(), assimpFlags);
|
||||
bool fileLoaded = gltfContext.LoadASCIIFromFile(&gltfModel, &error, &warning, filename);
|
||||
#endif
|
||||
|
||||
// Generate vertex buffer from ASSIMP scene data
|
||||
float scale = 1.0f;
|
||||
std::vector<uint32_t> indexBuffer;
|
||||
std::vector<Vertex> vertexBuffer;
|
||||
|
||||
// Iterate through all meshes in the file and extract the vertex components
|
||||
for (uint32_t m = 0; m < scene->mNumMeshes; m++)
|
||||
{
|
||||
for (uint32_t v = 0; v < scene->mMeshes[m]->mNumVertices; v++)
|
||||
{
|
||||
Vertex vertex;
|
||||
|
||||
// Use glm make_* functions to convert ASSIMP vectors to glm vectors
|
||||
vertex.pos = glm::make_vec3(&scene->mMeshes[m]->mVertices[v].x) * scale;
|
||||
vertex.normal = glm::make_vec3(&scene->mMeshes[m]->mNormals[v].x);
|
||||
// Texture coordinates and colors may have multiple channels, we only use the first [0] one
|
||||
vertex.uv = glm::make_vec2(&scene->mMeshes[m]->mTextureCoords[0][v].x);
|
||||
// Mesh may not have vertex colors
|
||||
vertex.color = (scene->mMeshes[m]->HasVertexColors(0)) ? glm::make_vec3(&scene->mMeshes[m]->mColors[0][v].r) : glm::vec3(1.0f);
|
||||
|
||||
// Vulkan uses a right-handed NDC (contrary to OpenGL), so simply flip Y-Axis
|
||||
vertex.pos.y *= -1.0f;
|
||||
|
||||
vertexBuffer.push_back(vertex);
|
||||
if (fileLoaded) {
|
||||
loadglTFImages(gltfModel);
|
||||
loadglTFMaterials(gltfModel);
|
||||
loadglTFTextures(gltfModel);
|
||||
const tinygltf::Scene& scene = gltfModel.scenes[0];
|
||||
for (size_t i = 0; i < scene.nodes.size(); i++) {
|
||||
const tinygltf::Node node = gltfModel.nodes[scene.nodes[i]];
|
||||
loadglTFNode(nullptr, node, gltfModel, indexBuffer, vertexBuffer);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// TODO: throw
|
||||
std::cerr << "Could not load gltf file: " << error << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
size_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
|
||||
|
||||
// Generate index buffer from ASSIMP scene data
|
||||
std::vector<uint32_t> indexBuffer;
|
||||
for (uint32_t m = 0; m < scene->mNumMeshes; m++)
|
||||
{
|
||||
uint32_t indexBase = static_cast<uint32_t>(indexBuffer.size());
|
||||
for (uint32_t f = 0; f < scene->mMeshes[m]->mNumFaces; f++)
|
||||
{
|
||||
// We assume that all faces are triangulated
|
||||
for (uint32_t i = 0; i < 3; i++)
|
||||
{
|
||||
indexBuffer.push_back(scene->mMeshes[m]->mFaces[f].mIndices[i] + indexBase);
|
||||
}
|
||||
}
|
||||
}
|
||||
size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
|
||||
model.indices.count = static_cast<uint32_t>(indexBuffer.size());
|
||||
|
||||
// Static mesh should always be device local
|
||||
//assert((vertexBufferSize > 0) && (indexBufferSize > 0));
|
||||
|
||||
bool useStaging = true;
|
||||
|
||||
if (useStaging)
|
||||
{
|
||||
struct {
|
||||
struct StagingBuffer {
|
||||
VkBuffer buffer;
|
||||
VkDeviceMemory memory;
|
||||
} vertexStaging, indexStaging;
|
||||
|
|
@ -304,7 +516,7 @@ public:
|
|||
&model.indices.buffer,
|
||||
&model.indices.memory));
|
||||
|
||||
// Copy from staging buffers
|
||||
// Copy data from staging buffers (host) do device local buffer (gpu)
|
||||
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
|
||||
VkBufferCopy copyRegion = {};
|
||||
|
|
@ -332,82 +544,13 @@ public:
|
|||
vkDestroyBuffer(device, indexStaging.buffer, nullptr);
|
||||
vkFreeMemory(device, indexStaging.memory, nullptr);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Vertex buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
||||
vertexBufferSize,
|
||||
&model.vertices.buffer,
|
||||
&model.vertices.memory,
|
||||
vertexBuffer.data()));
|
||||
// Index buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
|
||||
indexBufferSize,
|
||||
&model.indices.buffer,
|
||||
&model.indices.memory,
|
||||
indexBuffer.data()));
|
||||
}
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
{
|
||||
loadModel(getAssetPath() + "models/voyager/voyager.dae");
|
||||
loadglTF(getAssetPath() + "models/voyager/voyager.gltf");
|
||||
textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_rgba_unorm.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
|
||||
}
|
||||
|
||||
void setupVertexDescriptions()
|
||||
{
|
||||
// Binding description
|
||||
vertices.bindingDescriptions.resize(1);
|
||||
vertices.bindingDescriptions[0] =
|
||||
vks::initializers::vertexInputBindingDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
sizeof(Vertex),
|
||||
VK_VERTEX_INPUT_RATE_VERTEX);
|
||||
|
||||
// Attribute descriptions
|
||||
// Describes memory layout and shader positions
|
||||
vertices.attributeDescriptions.resize(4);
|
||||
// Location 0 : Position
|
||||
vertices.attributeDescriptions[0] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
0,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
offsetof(Vertex, pos));
|
||||
// Location 1 : Normal
|
||||
vertices.attributeDescriptions[1] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
1,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
offsetof(Vertex, normal));
|
||||
// Location 2 : Texture coordinates
|
||||
vertices.attributeDescriptions[2] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
2,
|
||||
VK_FORMAT_R32G32_SFLOAT,
|
||||
offsetof(Vertex, uv));
|
||||
// Location 3 : Color
|
||||
vertices.attributeDescriptions[3] =
|
||||
vks::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
3,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
offsetof(Vertex, color));
|
||||
|
||||
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
|
||||
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
||||
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
|
||||
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
||||
}
|
||||
|
||||
void setupDescriptorPool()
|
||||
{
|
||||
// Example uses one ubo and one combined image sampler
|
||||
|
|
@ -473,84 +616,56 @@ public:
|
|||
|
||||
void preparePipelines()
|
||||
{
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
||||
vks::initializers::pipelineInputAssemblyStateCreateInfo(
|
||||
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
||||
0,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
||||
vks::initializers::pipelineRasterizationStateCreateInfo(
|
||||
VK_POLYGON_MODE_FILL,
|
||||
VK_CULL_MODE_BACK_BIT,
|
||||
VK_FRONT_FACE_CLOCKWISE,
|
||||
0);
|
||||
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
||||
vks::initializers::pipelineColorBlendAttachmentState(
|
||||
0xf,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
||||
vks::initializers::pipelineColorBlendStateCreateInfo(
|
||||
1,
|
||||
&blendAttachmentState);
|
||||
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
||||
vks::initializers::pipelineDepthStencilStateCreateInfo(
|
||||
VK_TRUE,
|
||||
VK_TRUE,
|
||||
VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
|
||||
VkPipelineViewportStateCreateInfo viewportState =
|
||||
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState =
|
||||
vks::initializers::pipelineMultisampleStateCreateInfo(
|
||||
VK_SAMPLE_COUNT_1_BIT,
|
||||
0);
|
||||
|
||||
std::vector<VkDynamicState> dynamicStateEnables = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
|
||||
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
|
||||
// Vertex input bindings and attributes
|
||||
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
|
||||
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
|
||||
};
|
||||
VkPipelineDynamicStateCreateInfo dynamicState =
|
||||
vks::initializers::pipelineDynamicStateCreateInfo(
|
||||
dynamicStateEnables.data(),
|
||||
static_cast<uint32_t>(dynamicStateEnables.size()),
|
||||
0);
|
||||
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 0: Position
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)), // Location 1: Normal
|
||||
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, uv)), // Location 2: Texture coordinates
|
||||
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)), // Location 3: Color
|
||||
};
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertexInputStateCI.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
|
||||
vertexInputStateCI.pVertexBindingDescriptions = vertexInputBindings.data();
|
||||
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
||||
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
||||
|
||||
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
|
||||
loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
|
||||
loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
|
||||
};
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||
pipelineCI.pVertexInputState = &vertexInputStateCI;
|
||||
pipelineCI.pInputAssemblyState = &inputAssemblyStateCI;
|
||||
pipelineCI.pRasterizationState = &rasterizationStateCI;
|
||||
pipelineCI.pColorBlendState = &colorBlendStateCI;
|
||||
pipelineCI.pMultisampleState = &multisampleStateCI;
|
||||
pipelineCI.pViewportState = &viewportStateCI;
|
||||
pipelineCI.pDepthStencilState = &depthStencilStateCI;
|
||||
pipelineCI.pDynamicState = &dynamicStateCI;
|
||||
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCI.pStages = shaderStages.data();
|
||||
|
||||
// Solid rendering pipeline
|
||||
// Load shaders
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||
|
||||
shaderStages[0] = loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
||||
vks::initializers::pipelineCreateInfo(
|
||||
pipelineLayout,
|
||||
renderPass,
|
||||
0);
|
||||
|
||||
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
|
||||
|
||||
// Wire frame rendering pipeline
|
||||
if (deviceFeatures.fillModeNonSolid) {
|
||||
rasterizationState.polygonMode = VK_POLYGON_MODE_LINE;
|
||||
rasterizationState.lineWidth = 1.0f;
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe));
|
||||
rasterizationStateCI.polygonMode = VK_POLYGON_MODE_LINE;
|
||||
rasterizationStateCI.lineWidth = 1.0f;
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.wireframe));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -601,7 +716,6 @@ public:
|
|||
{
|
||||
VulkanExampleBase::prepare();
|
||||
loadAssets();
|
||||
setupVertexDescriptions();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptorSetLayout();
|
||||
preparePipelines();
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue