Initial commit for compute shader ray tracing example (work in progress)
This commit is contained in:
parent
97a9e27a5f
commit
d71a7e7d9a
16 changed files with 1264 additions and 0 deletions
794
raytracing/raytracing.cpp
Normal file
794
raytracing/raytracing.cpp
Normal file
|
|
@ -0,0 +1,794 @@
|
|||
/*
|
||||
* Vulkan Example - Compute shader ray tracing
|
||||
*
|
||||
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
|
||||
#define GLM_FORCE_RADIANS
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
|
||||
#include <vulkan/vulkan.h>
|
||||
#include "vulkanexamplebase.h"
|
||||
|
||||
#define VERTEX_BUFFER_BIND_ID 0
|
||||
#define ENABLE_VALIDATION false
|
||||
|
||||
#define TEX_DIM 2048
|
||||
|
||||
// Vertex layout for this example
|
||||
struct Vertex {
|
||||
float pos[3];
|
||||
float uv[2];
|
||||
};
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
private:
|
||||
vkTools::VulkanTexture textureComputeTarget;
|
||||
public:
|
||||
struct {
|
||||
VkPipelineVertexInputStateCreateInfo inputState;
|
||||
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
|
||||
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
|
||||
} vertices;
|
||||
|
||||
struct {
|
||||
vkMeshLoader::MeshBuffer quad;
|
||||
} meshes;
|
||||
|
||||
vkTools::UniformData uniformDataCompute;
|
||||
|
||||
struct {
|
||||
glm::vec3 lightPos;
|
||||
// Aspect ratio of the viewport
|
||||
float aspectRatio;
|
||||
glm::vec4 fogColor = glm::vec4(0.025f, 0.025f, 0.025f, 0.0f);
|
||||
struct {
|
||||
glm::vec3 pos = glm::vec3(0.0f, 1.0f, 4.0f);
|
||||
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
|
||||
float fov = 10.0f;
|
||||
} camera;
|
||||
} uboCompute;
|
||||
|
||||
struct {
|
||||
VkPipeline display;
|
||||
VkPipeline compute;
|
||||
} pipelines;
|
||||
|
||||
int vertexBufferSize;
|
||||
|
||||
VkQueue computeQueue;
|
||||
VkCommandBuffer computeCmdBuffer;
|
||||
VkPipelineLayout computePipelineLayout;
|
||||
VkDescriptorSet computeDescriptorSet;
|
||||
VkDescriptorSetLayout computeDescriptorSetLayout;
|
||||
VkDescriptorPool computeDescriptorPool;
|
||||
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkDescriptorSet descriptorSetPostCompute;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||
{
|
||||
zoom = -2.0f;
|
||||
title = "Vulkan Example - Compute shader ray tracing";
|
||||
uboCompute.aspectRatio = (float)width / (float)height;
|
||||
paused = true;
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
// Clean up used Vulkan resources
|
||||
// Note : Inherited destructor cleans up resources stored in base class
|
||||
|
||||
vkDestroyPipeline(device, pipelines.display, nullptr);
|
||||
vkDestroyPipeline(device, pipelines.compute, nullptr);
|
||||
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
|
||||
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
|
||||
|
||||
vkTools::destroyUniformData(device, &uniformDataCompute);
|
||||
|
||||
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);
|
||||
|
||||
textureLoader->destroyTexture(textureComputeTarget);
|
||||
}
|
||||
|
||||
// Prepare a texture target that is used to store compute shader calculations
|
||||
void prepareTextureTarget(vkTools::VulkanTexture *tex, uint32_t width, uint32_t height, VkFormat format)
|
||||
{
|
||||
// Get device properties for the requested texture format
|
||||
VkFormatProperties formatProperties;
|
||||
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
|
||||
// Check if requested image format supports image storage operations
|
||||
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
|
||||
|
||||
// Prepare blit target texture
|
||||
tex->width = width;
|
||||
tex->height = height;
|
||||
|
||||
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
|
||||
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
||||
imageCreateInfo.format = format;
|
||||
imageCreateInfo.extent = { width, height, 1 };
|
||||
imageCreateInfo.mipLevels = 1;
|
||||
imageCreateInfo.arrayLayers = 1;
|
||||
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
||||
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
||||
// Image will be sampled in the fragment shader and used as storage target in the compute shader
|
||||
imageCreateInfo.usage =
|
||||
VK_IMAGE_USAGE_SAMPLED_BIT |
|
||||
VK_IMAGE_USAGE_STORAGE_BIT;
|
||||
imageCreateInfo.flags = 0;
|
||||
|
||||
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
|
||||
VkMemoryRequirements memReqs;
|
||||
|
||||
vkTools::checkResult(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image));
|
||||
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
|
||||
memAllocInfo.allocationSize = memReqs.size;
|
||||
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
|
||||
vkTools::checkResult(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory));
|
||||
vkTools::checkResult(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0));
|
||||
|
||||
tex->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
vkTools::setImageLayout(
|
||||
setupCmdBuffer, tex->image,
|
||||
VK_IMAGE_ASPECT_COLOR_BIT,
|
||||
VK_IMAGE_LAYOUT_PREINITIALIZED,
|
||||
tex->imageLayout);
|
||||
|
||||
// Create sampler
|
||||
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
|
||||
sampler.magFilter = VK_FILTER_LINEAR;
|
||||
sampler.minFilter = VK_FILTER_LINEAR;
|
||||
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
||||
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
|
||||
sampler.addressModeV = sampler.addressModeU;
|
||||
sampler.addressModeW = sampler.addressModeU;
|
||||
sampler.mipLodBias = 0.0f;
|
||||
sampler.maxAnisotropy = 0;
|
||||
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
||||
sampler.minLod = 0.0f;
|
||||
sampler.maxLod = 0.0f;
|
||||
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
||||
vkTools::checkResult(vkCreateSampler(device, &sampler, nullptr, &tex->sampler));
|
||||
|
||||
// Create image view
|
||||
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
|
||||
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
|
||||
view.format = format;
|
||||
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
||||
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
||||
view.image = tex->image;
|
||||
vkTools::checkResult(vkCreateImageView(device, &view, nullptr, &tex->view));
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
// Destroy command buffers if already present
|
||||
if (!checkCommandBuffers())
|
||||
{
|
||||
destroyCommandBuffers();
|
||||
createCommandBuffers();
|
||||
}
|
||||
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[0].color = { {0.0f, 0.0f, 0.2f, 0.0f} };
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
VkResult err;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
// Set target frame buffer
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
|
||||
assert(!err);
|
||||
|
||||
// Image memory barrier to make sure that compute
|
||||
// shader writes are finished before sampling
|
||||
// from the texture
|
||||
VkImageMemoryBarrier imageMemoryBarrier = {};
|
||||
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
|
||||
imageMemoryBarrier.pNext = NULL;
|
||||
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
|
||||
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
|
||||
imageMemoryBarrier.image = textureComputeTarget.image;
|
||||
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
||||
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
|
||||
imageMemoryBarrier.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
|
||||
vkCmdPipelineBarrier(
|
||||
drawCmdBuffers[i],
|
||||
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
|
||||
VK_FLAGS_NONE,
|
||||
0, nullptr,
|
||||
0, nullptr,
|
||||
1, &imageMemoryBarrier);
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
|
||||
|
||||
// Display ray traced image generated by compute shader as a full screen quad
|
||||
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSetPostCompute, 0, NULL);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.display);
|
||||
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
err = vkEndCommandBuffer(drawCmdBuffers[i]);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void buildComputeCommandBuffer()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkResult err = vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo);
|
||||
assert(!err);
|
||||
|
||||
vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute);
|
||||
vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0);
|
||||
|
||||
vkCmdDispatch(computeCmdBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1);
|
||||
|
||||
vkEndCommandBuffer(computeCmdBuffer);
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VkResult err;
|
||||
|
||||
// Get next image in the swap chain (back/front buffer)
|
||||
err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer);
|
||||
assert(!err);
|
||||
|
||||
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
|
||||
|
||||
// Command buffer to be sumitted to the queue
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
|
||||
// Submit to queue
|
||||
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
|
||||
assert(!err);
|
||||
|
||||
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
|
||||
|
||||
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
|
||||
assert(!err);
|
||||
|
||||
err = vkQueueWaitIdle(queue);
|
||||
assert(!err);
|
||||
|
||||
// Compute
|
||||
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
|
||||
computeSubmitInfo.commandBufferCount = 1;
|
||||
computeSubmitInfo.pCommandBuffers = &computeCmdBuffer;
|
||||
|
||||
err = vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE);
|
||||
assert(!err);
|
||||
|
||||
err = vkQueueWaitIdle(computeQueue);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
// Setup vertices for a single uv-mapped quad
|
||||
void generateQuad()
|
||||
{
|
||||
#define dim 1.0f
|
||||
std::vector<Vertex> vertexBuffer =
|
||||
{
|
||||
{ { dim, dim, 0.0f }, { 1.0f, 1.0f } },
|
||||
{ { -dim, dim, 0.0f }, { 0.0f, 1.0f } },
|
||||
{ { -dim, -dim, 0.0f }, { 0.0f, 0.0f } },
|
||||
{ { dim, -dim, 0.0f }, { 1.0f, 0.0f } }
|
||||
};
|
||||
#undef dim
|
||||
|
||||
createBuffer(
|
||||
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
|
||||
vertexBuffer.size() * sizeof(Vertex),
|
||||
vertexBuffer.data(),
|
||||
&meshes.quad.vertices.buf,
|
||||
&meshes.quad.vertices.mem);
|
||||
|
||||
// Setup indices
|
||||
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
|
||||
meshes.quad.indexCount = indexBuffer.size();
|
||||
|
||||
createBuffer(
|
||||
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
|
||||
indexBuffer.size() * sizeof(uint32_t),
|
||||
indexBuffer.data(),
|
||||
&meshes.quad.indices.buf,
|
||||
&meshes.quad.indices.mem);
|
||||
}
|
||||
|
||||
void setupVertexDescriptions()
|
||||
{
|
||||
// Binding description
|
||||
vertices.bindingDescriptions.resize(1);
|
||||
vertices.bindingDescriptions[0] =
|
||||
vkTools::initializers::vertexInputBindingDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
sizeof(Vertex),
|
||||
VK_VERTEX_INPUT_RATE_VERTEX);
|
||||
|
||||
// Attribute descriptions
|
||||
// Describes memory layout and shader positions
|
||||
vertices.attributeDescriptions.resize(2);
|
||||
// Location 0 : Position
|
||||
vertices.attributeDescriptions[0] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
0,
|
||||
VK_FORMAT_R32G32B32_SFLOAT,
|
||||
0);
|
||||
// Location 1 : Texture coordinates
|
||||
vertices.attributeDescriptions[1] =
|
||||
vkTools::initializers::vertexInputAttributeDescription(
|
||||
VERTEX_BUFFER_BIND_ID,
|
||||
1,
|
||||
VK_FORMAT_R32G32_SFLOAT,
|
||||
sizeof(float) * 3);
|
||||
|
||||
// Assign to vertex buffer
|
||||
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
|
||||
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
|
||||
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
|
||||
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
|
||||
}
|
||||
|
||||
void setupDescriptorPool()
|
||||
{
|
||||
std::vector<VkDescriptorPoolSize> poolSizes =
|
||||
{
|
||||
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
||||
// Graphics pipeline uses image samplers for display
|
||||
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
|
||||
// Compute pipeline uses storage images image loads and stores
|
||||
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
|
||||
};
|
||||
|
||||
VkDescriptorPoolCreateInfo descriptorPoolInfo =
|
||||
vkTools::initializers::descriptorPoolCreateInfo(
|
||||
poolSizes.size(),
|
||||
poolSizes.data(),
|
||||
3);
|
||||
|
||||
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
|
||||
assert(!vkRes);
|
||||
}
|
||||
|
||||
void setupDescriptorSetLayout()
|
||||
{
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
|
||||
{
|
||||
// Binding 0 : Fragment shader image sampler
|
||||
vkTools::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
VK_SHADER_STAGE_FRAGMENT_BIT,
|
||||
0)
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
||||
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
||||
setLayoutBindings.data(),
|
||||
setLayoutBindings.size());
|
||||
|
||||
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
|
||||
assert(!err);
|
||||
|
||||
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
||||
vkTools::initializers::pipelineLayoutCreateInfo(
|
||||
&descriptorSetLayout,
|
||||
1);
|
||||
|
||||
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
void setupDescriptorSet()
|
||||
{
|
||||
VkDescriptorSetAllocateInfo allocInfo =
|
||||
vkTools::initializers::descriptorSetAllocateInfo(
|
||||
descriptorPool,
|
||||
&descriptorSetLayout,
|
||||
1);
|
||||
|
||||
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetPostCompute);
|
||||
assert(!vkRes);
|
||||
|
||||
// Image descriptor for the color map texture
|
||||
VkDescriptorImageInfo texDescriptor =
|
||||
vkTools::initializers::descriptorImageInfo(
|
||||
textureComputeTarget.sampler,
|
||||
textureComputeTarget.view,
|
||||
VK_IMAGE_LAYOUT_GENERAL);
|
||||
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
||||
{
|
||||
// Binding 0 : Fragment shader texture sampler
|
||||
vkTools::initializers::writeDescriptorSet(
|
||||
descriptorSetPostCompute,
|
||||
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
||||
0,
|
||||
&texDescriptor)
|
||||
};
|
||||
|
||||
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
||||
}
|
||||
|
||||
// Create a separate command buffer for compute commands
|
||||
void createComputeCommandBuffer()
|
||||
{
|
||||
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
|
||||
vkTools::initializers::commandBufferAllocateInfo(
|
||||
cmdPool,
|
||||
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
|
||||
1);
|
||||
|
||||
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer);
|
||||
assert(!vkRes);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
VkResult err;
|
||||
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
|
||||
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
|
||||
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
|
||||
0,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState =
|
||||
vkTools::initializers::pipelineRasterizationStateCreateInfo(
|
||||
VK_POLYGON_MODE_FILL,
|
||||
VK_CULL_MODE_NONE,
|
||||
VK_FRONT_FACE_COUNTER_CLOCKWISE,
|
||||
0);
|
||||
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState =
|
||||
vkTools::initializers::pipelineColorBlendAttachmentState(
|
||||
0xf,
|
||||
VK_FALSE);
|
||||
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState =
|
||||
vkTools::initializers::pipelineColorBlendStateCreateInfo(
|
||||
1,
|
||||
&blendAttachmentState);
|
||||
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState =
|
||||
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
|
||||
VK_TRUE,
|
||||
VK_TRUE,
|
||||
VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
|
||||
VkPipelineViewportStateCreateInfo viewportState =
|
||||
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState =
|
||||
vkTools::initializers::pipelineMultisampleStateCreateInfo(
|
||||
VK_SAMPLE_COUNT_1_BIT,
|
||||
0);
|
||||
|
||||
std::vector<VkDynamicState> dynamicStateEnables = {
|
||||
VK_DYNAMIC_STATE_VIEWPORT,
|
||||
VK_DYNAMIC_STATE_SCISSOR
|
||||
};
|
||||
VkPipelineDynamicStateCreateInfo dynamicState =
|
||||
vkTools::initializers::pipelineDynamicStateCreateInfo(
|
||||
dynamicStateEnables.data(),
|
||||
dynamicStateEnables.size(),
|
||||
0);
|
||||
|
||||
// Display pipeline
|
||||
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
|
||||
|
||||
shaderStages[0] = loadShader(getAssetPath() + "shaders/raytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getAssetPath() + "shaders/raytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
|
||||
vkTools::initializers::pipelineCreateInfo(
|
||||
pipelineLayout,
|
||||
renderPass,
|
||||
0);
|
||||
|
||||
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = shaderStages.size();
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
pipelineCreateInfo.renderPass = renderPass;
|
||||
|
||||
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.display);
|
||||
assert(!err);
|
||||
}
|
||||
|
||||
// Prepare the compute pipeline that generates the ray traced image
|
||||
void prepareCompute()
|
||||
{
|
||||
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0 : Sampled image (write)
|
||||
vkTools::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
|
||||
VK_SHADER_STAGE_COMPUTE_BIT,
|
||||
0),
|
||||
// Binding 1 : Uniform buffer block
|
||||
vkTools::initializers::descriptorSetLayoutBinding(
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
VK_SHADER_STAGE_COMPUTE_BIT,
|
||||
1)
|
||||
};
|
||||
|
||||
VkDescriptorSetLayoutCreateInfo descriptorLayout =
|
||||
vkTools::initializers::descriptorSetLayoutCreateInfo(
|
||||
setLayoutBindings.data(),
|
||||
setLayoutBindings.size());
|
||||
|
||||
VkResult err = vkCreateDescriptorSetLayout(
|
||||
device,
|
||||
&descriptorLayout,
|
||||
nullptr,
|
||||
&computeDescriptorSetLayout);
|
||||
assert(!err);
|
||||
|
||||
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
|
||||
vkTools::initializers::pipelineLayoutCreateInfo(
|
||||
&computeDescriptorSetLayout,
|
||||
1);
|
||||
|
||||
err = vkCreatePipelineLayout(
|
||||
device,
|
||||
&pPipelineLayoutCreateInfo,
|
||||
nullptr,
|
||||
&computePipelineLayout);
|
||||
assert(!err);
|
||||
|
||||
VkDescriptorSetAllocateInfo allocInfo =
|
||||
vkTools::initializers::descriptorSetAllocateInfo(
|
||||
descriptorPool,
|
||||
&computeDescriptorSetLayout,
|
||||
1);
|
||||
|
||||
err = vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet);
|
||||
assert(!err);
|
||||
|
||||
std::vector<VkDescriptorImageInfo> computeTexDescriptors =
|
||||
{
|
||||
vkTools::initializers::descriptorImageInfo(
|
||||
VK_NULL_HANDLE,
|
||||
textureComputeTarget.view,
|
||||
VK_IMAGE_LAYOUT_GENERAL)
|
||||
};
|
||||
|
||||
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
|
||||
{
|
||||
// Binding 0 : Output storage image
|
||||
vkTools::initializers::writeDescriptorSet(
|
||||
computeDescriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
|
||||
0,
|
||||
&computeTexDescriptors[0]),
|
||||
// Binding 1 : Uniform buffer block
|
||||
vkTools::initializers::writeDescriptorSet(
|
||||
computeDescriptorSet,
|
||||
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
||||
1,
|
||||
&uniformDataCompute.descriptor)
|
||||
};
|
||||
|
||||
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
|
||||
|
||||
|
||||
// Create compute shader pipelines
|
||||
VkComputePipelineCreateInfo computePipelineCreateInfo =
|
||||
vkTools::initializers::computePipelineCreateInfo(
|
||||
computePipelineLayout,
|
||||
0);
|
||||
|
||||
computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/raytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
|
||||
vkTools::checkResult(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipelines.compute));
|
||||
}
|
||||
|
||||
// Prepare and initialize uniform buffer containing shader uniforms
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Vertex shader uniform buffer block
|
||||
createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
sizeof(uboCompute),
|
||||
&uboCompute,
|
||||
&uniformDataCompute.buffer,
|
||||
&uniformDataCompute.memory,
|
||||
&uniformDataCompute.descriptor);
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
uboCompute.lightPos.x = 0.0f;
|
||||
uboCompute.lightPos.y = 1.0f;
|
||||
uboCompute.lightPos.z = 1.5f;
|
||||
uint8_t *pData;
|
||||
vkTools::checkResult(vkMapMemory(device, uniformDataCompute.memory, 0, sizeof(uboCompute), 0, (void **)&pData));
|
||||
memcpy(pData, &uboCompute, sizeof(uboCompute));
|
||||
vkUnmapMemory(device, uniformDataCompute.memory);
|
||||
}
|
||||
|
||||
// Find and create a compute capable device queue
|
||||
void getComputeQueue()
|
||||
{
|
||||
uint32_t queueIndex = 0;
|
||||
uint32_t queueCount;
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
|
||||
assert(queueCount >= 1);
|
||||
|
||||
std::vector<VkQueueFamilyProperties> queueProps;
|
||||
queueProps.resize(queueCount);
|
||||
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
|
||||
|
||||
for (queueIndex = 0; queueIndex < queueCount; queueIndex++)
|
||||
{
|
||||
if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT)
|
||||
break;
|
||||
}
|
||||
assert(queueIndex < queueCount);
|
||||
|
||||
VkDeviceQueueCreateInfo queueCreateInfo = {};
|
||||
queueCreateInfo.queueFamilyIndex = queueIndex;
|
||||
queueCreateInfo.queueCount = 1;
|
||||
vkGetDeviceQueue(device, queueIndex, 0, &computeQueue);
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
generateQuad();
|
||||
getComputeQueue();
|
||||
createComputeCommandBuffer();
|
||||
setupVertexDescriptions();
|
||||
prepareUniformBuffers();
|
||||
prepareTextureTarget(
|
||||
&textureComputeTarget,
|
||||
TEX_DIM,
|
||||
TEX_DIM,
|
||||
VK_FORMAT_R8G8B8A8_UNORM);
|
||||
setupDescriptorSetLayout();
|
||||
preparePipelines();
|
||||
setupDescriptorPool();
|
||||
setupDescriptorSet();
|
||||
prepareCompute();
|
||||
buildCommandBuffers();
|
||||
buildComputeCommandBuffer();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
vkDeviceWaitIdle(device);
|
||||
draw();
|
||||
vkDeviceWaitIdle(device);
|
||||
if (!paused)
|
||||
{
|
||||
updateUniformBuffers();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void viewChanged()
|
||||
{
|
||||
updateUniformBuffers();
|
||||
}
|
||||
};
|
||||
|
||||
VulkanExample *vulkanExample;
|
||||
|
||||
#if defined(_WIN32)
|
||||
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
|
||||
{
|
||||
if (vulkanExample != NULL)
|
||||
{
|
||||
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
|
||||
}
|
||||
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
|
||||
}
|
||||
#elif defined(__linux__) && !defined(__ANDROID__)
|
||||
static void handleEvent(const xcb_generic_event_t *event)
|
||||
{
|
||||
if (vulkanExample != NULL)
|
||||
{
|
||||
vulkanExample->handleEvent(event);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Main entry point
|
||||
#if defined(_WIN32)
|
||||
// Windows entry point
|
||||
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
|
||||
#elif defined(__ANDROID__)
|
||||
// Android entry point
|
||||
void android_main(android_app* state)
|
||||
#elif defined(__linux__)
|
||||
// Linux entry point
|
||||
int main(const int argc, const char *argv[])
|
||||
#endif
|
||||
{
|
||||
#if defined(__ANDROID__)
|
||||
// Removing this may cause the compiler to omit the main entry point
|
||||
// which would make the application crash at start
|
||||
app_dummy();
|
||||
#endif
|
||||
vulkanExample = new VulkanExample();
|
||||
#if defined(_WIN32)
|
||||
vulkanExample->setupWindow(hInstance, WndProc);
|
||||
#elif defined(__ANDROID__)
|
||||
// Attach vulkan example to global android application state
|
||||
state->userData = vulkanExample;
|
||||
state->onAppCmd = VulkanExample::handleAppCommand;
|
||||
state->onInputEvent = VulkanExample::handleAppInput;
|
||||
vulkanExample->androidApp = state;
|
||||
#elif defined(__linux__)
|
||||
vulkanExample->setupWindow();
|
||||
#endif
|
||||
#if !defined(__ANDROID__)
|
||||
vulkanExample->initSwapchain();
|
||||
vulkanExample->prepare();
|
||||
#endif
|
||||
vulkanExample->renderLoop();
|
||||
delete(vulkanExample);
|
||||
#if !defined(__ANDROID__)
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue