Initial commit for compute shader ray tracing example (work in progress)

This commit is contained in:
saschawillems 2016-03-27 21:49:14 +02:00
parent 97a9e27a5f
commit d71a7e7d9a
16 changed files with 1264 additions and 0 deletions

10
android/raytracing/.gitignore vendored Normal file
View file

@ -0,0 +1,10 @@
/assets/
/res/
/bin/
/libs/
/obj/
/build.xml
/local.properties
/project.properties
/proguard-project.txt
*.apk

View file

@ -0,0 +1,27 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="de.saschawillems.vulkanRaytracing"
android:versionCode="1"
android:versionName="1.0">
<uses-sdk android:minSdkVersion="19" />
<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>
<uses-feature android:name="android.hardware.gamepad" android:required="false"/>
<uses-feature android:name="android.software.leanback" android:required="false"/>
<application android:label="vulkanRaytracing" android:icon="@drawable/icon" android:hasCode="false">
<activity android:name="android.app.NativeActivity"
android:label="Raytracing"
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:launchMode="singleTask"
android:configChanges="orientation|screenSize|keyboardHidden">
<meta-data android:name="android.app.lib_name" android:value="vulkanRaytracing" />
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
<category android:name="android.intent.category.LEANBACK_LAUNCHER"/>
</intent-filter>
</activity>
</application>
</manifest>

View file

@ -0,0 +1,17 @@
cd jni
call ndk-build
if %ERRORLEVEL% EQU 0 (
echo ndk-build has failed, build cancelled
cd..
mkdir "assets\shaders\raytracing"
xcopy "..\..\data\shaders\raytracing\*.spv" "assets\shaders\raytracing" /Y
mkdir "res\drawable"
xcopy "..\..\android\images\icon.png" "res\drawable" /Y
call ant debug -Dout.final.file=vulkanRaytracing.apk
) ELSE (
echo error : ndk-build failed with errors!
cd..
)

View file

@ -0,0 +1,47 @@
LOCAL_PATH := $(call my-dir)/../../raytracing
# assimp
include $(CLEAR_VARS)
LOCAL_MODULE := assimp
LOCAL_SRC_FILES := $(LOCAL_PATH)/../../libs/assimp/$(TARGET_ARCH_ABI)/libassimp.a
include $(PREBUILT_STATIC_LIBRARY)
# vulkan example
DATADIR := $(LOCAL_PATH)/../../data
include $(CLEAR_VARS)
LOCAL_MODULE := vulkanRaytracing
PROJECT_FILES := $(wildcard $(LOCAL_PATH)/../../raytracing/*.cpp)
PROJECT_FILES += $(wildcard $(LOCAL_PATH)/../../base/*.cpp)
LOCAL_CPPFLAGS := -std=c++11
LOCAL_CPPFLAGS += -D__STDC_LIMIT_MACROS
LOCAL_CPPFLAGS += -DVK_NO_PROTOTYPES
LOCAL_CPPFLAGS += -DVK_USE_PLATFORM_ANDROID_KHR
LOCAL_C_INCLUDES := $(LOCAL_PATH)/../../external/
LOCAL_C_INCLUDES += $(LOCAL_PATH)/../../external/glm
LOCAL_C_INCLUDES += $(LOCAL_PATH)/../../external/gli
LOCAL_C_INCLUDES += $(LOCAL_PATH)/../../external/assimp
LOCAL_C_INCLUDES += $(LOCAL_PATH)/../../base/
#LOCAL_C_INCLUDES += $(LOCAL_PATH)/../../base/android
LOCAL_SRC_FILES := $(PROJECT_FILES)
LOCAL_LDLIBS := -landroid -llog -lz
LOCAL_DISABLE_FORMAT_STRING_CHECKS := true
LOCAL_STATIC_LIBRARIES += android_native_app_glue
LOCAL_STATIC_LIBRARIES += cpufeatures
LOCAL_STATIC_LIBRARIES += libassimp
include $(BUILD_SHARED_LIBRARY)
$(call import-module, android/native_app_glue)
$(call import-module, android/cpufeatures)

View file

@ -0,0 +1,5 @@
APP_PLATFORM := android-19
APP_ABI := armeabi-v7a
APP_STL := c++_static
APP_CPPFLAGS := -std=c++11
NDK_TOOLCHAIN_VERSION := clang

View file

@ -0,0 +1,3 @@
glslangvalidator -V texture.frag -o texture.frag.spv
glslangvalidator -V texture.vert -o texture.vert.spv
glslangvalidator -V raytracing.comp -o raytracing.comp.spv

View file

@ -0,0 +1,187 @@
// Shader is looseley based on the ray tracing coding session by Inigo Quilez (www.iquilezles.org)
#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (local_size_x =16, local_size_y = 16) in;
layout (binding = 0, rgba8) uniform image2D resultImage;
#define MAXLEN 1000.0
#define PLANEID 1
#define SPHERECOUNT 3
struct Camera {
vec3 pos;
vec3 lookat;
float fov;
};
layout (binding = 1) uniform UBO
{
vec3 lightPos;
float aspectRatio;
vec4 fogColor;
Camera camera;
mat4 rotMat;
} ubo;
// Lighting calculations
float lightDiffuse(vec3 normal, vec3 lightDir)
{
return clamp(dot(normal, lightDir), 0.0, 1.0);
}
float lightSpecular(vec3 normal, vec3 lightDir)
{
vec3 viewVec = normalize(ubo.camera.pos);
vec3 halfVec = normalize(lightDir + viewVec);
return pow(clamp(dot(normal, halfVec), 0.0, 1.0), 16.0);
}
// Primitives
// Basic material description
struct Material
{
vec3 diffuse;
vec3 specular;
};
// Sphere
struct Sphere
{
int id;
vec3 pos;
float r;
Material material;
} sphere;
Sphere spheres[SPHERECOUNT];
float sphereIntersect(in vec3 rayO, in vec3 rayD, in Sphere sphere)
{
vec3 oc = rayO - sphere.pos;
float b = 2.0 * dot(oc, rayD);
float c = dot(oc, oc) - sphere.r*sphere.r;
float h = b*b - 4.0*c;
if (h < 0.0)
{
return -1.0;
}
float t = (-b - sqrt(h)) / 2.0;
return t;
}
vec3 sphereNormal(in vec3 pos, in Sphere sphere)
{
return (pos - sphere.pos) / sphere.r;
}
// Plane
float planeIntersect(vec3 rayO, vec3 rayD)
{
return -rayO.y/rayD.y;
}
vec3 planeNormal(in vec3 pos)
{
return vec3(0.0, 1.0, 0.0);
}
int intersect(in vec3 rayO, in vec3 rayD, out float resT)
{
int id = -1;
resT = MAXLEN;
float tplane = planeIntersect(rayO, rayD);
if ((tplane > 0.0) && (tplane < resT))
{
id = PLANEID;
resT = tplane;
}
for (int i = 0; i < SPHERECOUNT; i++)
{
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if (tSphere > 0.0)
{
id = spheres[i].id;
resT = tSphere;
break;
}
}
return id;
}
vec3 fog(in float t, in vec3 color)
{
return mix(color, ubo.fogColor.rgb, clamp(sqrt(t*t)/10.0, 0.0, 1.0));
}
void main()
{
// Scene setup
spheres[0].id = 2;
spheres[0].pos = vec3(-2.25, 1.0, 0.0);
spheres[0].r = 1.0;
spheres[0].material.diffuse = vec3(1.0, 0.0, 0.0);
spheres[0].material.specular = vec3(1.0, 1.0, 1.0);
spheres[1].id = 3;
spheres[1].pos = vec3(2.25, 1.0, 0.0);
spheres[1].r = 1.0;
spheres[1].material.diffuse = vec3(0.0, 1.0, 0.0);
spheres[1].material.specular = vec3(1.0, 1.0, 1.0);
spheres[2].id = 4;
spheres[2].pos = vec3(0.0, 1.0, 0.0);
spheres[2].r = 1.0;
spheres[2].material.diffuse = vec3(0.0, 0.0, 1.0);
spheres[2].material.specular = vec3(1.0, 1.0, 1.0);
ivec2 pixelCoord = ivec2(gl_GlobalInvocationID.xy);
ivec2 dim = imageSize(resultImage);
vec2 uv = vec2(gl_GlobalInvocationID.xy)/dim;
vec3 rayO = ubo.camera.pos;
vec3 rayD = normalize(vec3((-1.0 + 2.0 * uv) * vec2(ubo.aspectRatio, 1.0), -1.0));
// Get intersected object ID
float t;
int objectID = intersect(rayO, rayD, t);
vec3 color = vec3(0.0);
if (objectID == PLANEID)
{
vec3 pos = rayO + t * rayD;
vec3 normal = planeNormal(pos);
vec3 lightVec = normalize(ubo.lightPos - pos);
float diffuse = clamp(dot(normal, lightVec), 0.0, 1.0);
color = vec3(1.0, 1.0, 1.0) * diffuse;
}
else
{
for (int i = 0; i < SPHERECOUNT; i++)
{
if (objectID == spheres[i].id)
{
vec3 pos = rayO + t * rayD;
vec3 lightVec = normalize(ubo.lightPos - pos);
vec3 normal = sphereNormal(pos, spheres[i]);
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec);
color = diffuse * spheres[i].material.diffuse + specular * spheres[i].material.specular;
}
}
}
color = fog(t, color);
imageStore(resultImage, ivec2(gl_GlobalInvocationID.xy), vec4(color, 0.0));
}

Binary file not shown.

View file

@ -0,0 +1,15 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (binding = 0) uniform sampler2D samplerColor;
layout (location = 0) in vec2 inUV;
layout (location = 0) out vec4 outFragColor;
void main()
{
outFragColor = texture(samplerColor, vec2(inUV.s, 1.0 - inUV.t));
}

Binary file not shown.

View file

@ -0,0 +1,15 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec2 inUV;
layout (location = 0) out vec2 outUV;
void main()
{
outUV = inUV;
gl_Position = vec4(inPos.xyz, 1.0);
}

Binary file not shown.

794
raytracing/raytracing.cpp Normal file
View file

@ -0,0 +1,794 @@
/*
* Vulkan Example - Compute shader ray tracing
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
#define TEX_DIM 2048
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
};
class VulkanExample : public VulkanExampleBase
{
private:
vkTools::VulkanTexture textureComputeTarget;
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
vkMeshLoader::MeshBuffer quad;
} meshes;
vkTools::UniformData uniformDataCompute;
struct {
glm::vec3 lightPos;
// Aspect ratio of the viewport
float aspectRatio;
glm::vec4 fogColor = glm::vec4(0.025f, 0.025f, 0.025f, 0.0f);
struct {
glm::vec3 pos = glm::vec3(0.0f, 1.0f, 4.0f);
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
float fov = 10.0f;
} camera;
} uboCompute;
struct {
VkPipeline display;
VkPipeline compute;
} pipelines;
int vertexBufferSize;
VkQueue computeQueue;
VkCommandBuffer computeCmdBuffer;
VkPipelineLayout computePipelineLayout;
VkDescriptorSet computeDescriptorSet;
VkDescriptorSetLayout computeDescriptorSetLayout;
VkDescriptorPool computeDescriptorPool;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSetPostCompute;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -2.0f;
title = "Vulkan Example - Compute shader ray tracing";
uboCompute.aspectRatio = (float)width / (float)height;
paused = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.display, nullptr);
vkDestroyPipeline(device, pipelines.compute, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkMeshLoader::freeMeshBufferResources(device, &meshes.quad);
vkTools::destroyUniformData(device, &uniformDataCompute);
vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer);
textureLoader->destroyTexture(textureComputeTarget);
}
// Prepare a texture target that is used to store compute shader calculations
void prepareTextureTarget(vkTools::VulkanTexture *tex, uint32_t width, uint32_t height, VkFormat format)
{
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if requested image format supports image storage operations
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
// Prepare blit target texture
tex->width = width;
tex->height = height;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
// Image will be sampled in the fragment shader and used as storage target in the compute shader
imageCreateInfo.usage =
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkTools::checkResult(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image));
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory));
vkTools::checkResult(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0));
tex->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
vkTools::setImageLayout(
setupCmdBuffer, tex->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
tex->imageLayout);
// Create sampler
VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = sampler.addressModeU;
sampler.addressModeW = sampler.addressModeU;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
vkTools::checkResult(vkCreateSampler(device, &sampler, nullptr, &tex->sampler));
// Create image view
VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = tex->image;
vkTools::checkResult(vkCreateImageView(device, &view, nullptr, &tex->view));
}
void buildCommandBuffers()
{
// Destroy command buffers if already present
if (!checkCommandBuffers())
{
destroyCommandBuffers();
createCommandBuffers();
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[0].color = { {0.0f, 0.0f, 0.2f, 0.0f} };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
// Image memory barrier to make sure that compute
// shader writes are finished before sampling
// from the texture
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.pNext = NULL;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = textureComputeTarget.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Display ray traced image generated by compute shader as a full screen quad
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSetPostCompute, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.display);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
VkResult err = vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo);
assert(!err);
vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute);
vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0);
vkCmdDispatch(computeCmdBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1);
vkEndCommandBuffer(computeCmdBuffer);
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
assert(!err);
submitPostPresentBarrier(swapChain.buffers[currentBuffer].image);
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
submitPrePresentBarrier(swapChain.buffers[currentBuffer].image);
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Compute
VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo();
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &computeCmdBuffer;
err = vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(computeQueue);
assert(!err);
}
// Setup vertices for a single uv-mapped quad
void generateQuad()
{
#define dim 1.0f
std::vector<Vertex> vertexBuffer =
{
{ { dim, dim, 0.0f }, { 1.0f, 1.0f } },
{ { -dim, dim, 0.0f }, { 0.0f, 1.0f } },
{ { -dim, -dim, 0.0f }, { 0.0f, 0.0f } },
{ { dim, -dim, 0.0f }, { 1.0f, 0.0f } }
};
#undef dim
createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
vertexBuffer.size() * sizeof(Vertex),
vertexBuffer.data(),
&meshes.quad.vertices.buf,
&meshes.quad.vertices.mem);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0,1,2, 2,3,0 };
meshes.quad.indexCount = indexBuffer.size();
createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
indexBuffer.size() * sizeof(uint32_t),
indexBuffer.data(),
&meshes.quad.indices.buf,
&meshes.quad.indices.mem);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 3);
// Assign to vertex buffer
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
// Graphics pipeline uses image samplers for display
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
// Compute pipeline uses storage images image loads and stores
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vkTools::initializers::descriptorPoolCreateInfo(
poolSizes.size(),
poolSizes.data(),
3);
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Fragment shader image sampler
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetPostCompute);
assert(!vkRes);
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
textureComputeTarget.sampler,
textureComputeTarget.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Fragment shader texture sampler
vkTools::initializers::writeDescriptorSet(
descriptorSetPostCompute,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0,
&texDescriptor)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
// Create a separate command buffer for compute commands
void createComputeCommandBuffer()
{
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vkTools::initializers::commandBufferAllocateInfo(
cmdPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer);
assert(!vkRes);
}
void preparePipelines()
{
VkResult err;
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vkTools::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vkTools::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vkTools::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vkTools::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vkTools::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vkTools::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vkTools::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
dynamicStateEnables.size(),
0);
// Display pipeline
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/raytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/raytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.display);
assert(!err);
}
// Prepare the compute pipeline that generates the ray traced image
void prepareCompute()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Sampled image (write)
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_COMPUTE_BIT,
0),
// Binding 1 : Uniform buffer block
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vkTools::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
setLayoutBindings.size());
VkResult err = vkCreateDescriptorSetLayout(
device,
&descriptorLayout,
nullptr,
&computeDescriptorSetLayout);
assert(!err);
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vkTools::initializers::pipelineLayoutCreateInfo(
&computeDescriptorSetLayout,
1);
err = vkCreatePipelineLayout(
device,
&pPipelineLayoutCreateInfo,
nullptr,
&computePipelineLayout);
assert(!err);
VkDescriptorSetAllocateInfo allocInfo =
vkTools::initializers::descriptorSetAllocateInfo(
descriptorPool,
&computeDescriptorSetLayout,
1);
err = vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet);
assert(!err);
std::vector<VkDescriptorImageInfo> computeTexDescriptors =
{
vkTools::initializers::descriptorImageInfo(
VK_NULL_HANDLE,
textureComputeTarget.view,
VK_IMAGE_LAYOUT_GENERAL)
};
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
{
// Binding 0 : Output storage image
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
0,
&computeTexDescriptors[0]),
// Binding 1 : Uniform buffer block
vkTools::initializers::writeDescriptorSet(
computeDescriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
&uniformDataCompute.descriptor)
};
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
// Create compute shader pipelines
VkComputePipelineCreateInfo computePipelineCreateInfo =
vkTools::initializers::computePipelineCreateInfo(
computePipelineLayout,
0);
computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/raytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
vkTools::checkResult(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipelines.compute));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
sizeof(uboCompute),
&uboCompute,
&uniformDataCompute.buffer,
&uniformDataCompute.memory,
&uniformDataCompute.descriptor);
updateUniformBuffers();
}
void updateUniformBuffers()
{
uboCompute.lightPos.x = 0.0f;
uboCompute.lightPos.y = 1.0f;
uboCompute.lightPos.z = 1.5f;
uint8_t *pData;
vkTools::checkResult(vkMapMemory(device, uniformDataCompute.memory, 0, sizeof(uboCompute), 0, (void **)&pData));
memcpy(pData, &uboCompute, sizeof(uboCompute));
vkUnmapMemory(device, uniformDataCompute.memory);
}
// Find and create a compute capable device queue
void getComputeQueue()
{
uint32_t queueIndex = 0;
uint32_t queueCount;
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL);
assert(queueCount >= 1);
std::vector<VkQueueFamilyProperties> queueProps;
queueProps.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data());
for (queueIndex = 0; queueIndex < queueCount; queueIndex++)
{
if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT)
break;
}
assert(queueIndex < queueCount);
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.queueFamilyIndex = queueIndex;
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, queueIndex, 0, &computeQueue);
}
void prepare()
{
VulkanExampleBase::prepare();
generateQuad();
getComputeQueue();
createComputeCommandBuffer();
setupVertexDescriptions();
prepareUniformBuffers();
prepareTextureTarget(
&textureComputeTarget,
TEX_DIM,
TEX_DIM,
VK_FORMAT_R8G8B8A8_UNORM);
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompute();
buildCommandBuffers();
buildComputeCommandBuffer();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
if (!paused)
{
updateUniformBuffers();
}
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}

View file

@ -0,0 +1,96 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{8B1C24E5-CC00-484C-9F6F-8FFCBDA3AA30}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
<OutDir>$(SolutionDir)\bin\</OutDir>
<IntDir>$(SolutionDir)\bin\intermediate\$(ProjectName)\$(ConfigurationName)</IntDir>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>true</LinkIncremental>
<OutDir>$(SolutionDir)\bin\</OutDir>
<IntDir>$(SolutionDir)\bin\intermediate\$(ProjectName)\$(ConfigurationName)</IntDir>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PreprocessorDefinitions>WIN32;_DEBUG;_WINDOWS;VK_USE_PLATFORM_WIN32_KHR;_USE_MATH_DEFINES;NOMINMAX;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreadedDebugDLL</RuntimeLibrary>
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<Optimization>Disabled</Optimization>
<AdditionalIncludeDirectories>..\base;..\external\glm;..\external\gli;..\external\assimp;..\external;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalOptions>/FS %(AdditionalOptions)</AdditionalOptions>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<AdditionalDependencies>..\libs\vulkan\vulkan-1.lib;..\libs\assimp\assimp.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<PreprocessorDefinitions>WIN32;NDEBUG;_WINDOWS;VK_USE_PLATFORM_WIN32_KHR;_USE_MATH_DEFINES;NOMINMAX;_CRT_SECURE_NO_WARNINGS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<RuntimeLibrary>MultiThreadedDLL</RuntimeLibrary>
<WarningLevel>Level3</WarningLevel>
<DebugInformationFormat>ProgramDatabase</DebugInformationFormat>
<AdditionalIncludeDirectories>..\base;..\external\glm;..\external\gli;..\external\assimp;..\external;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<Optimization>MaxSpeed</Optimization>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<SubSystem>Windows</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<AdditionalDependencies>..\libs\vulkan\vulkan-1.lib;..\libs\assimp\assimp.lib;%(AdditionalDependencies)</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="..\base\vulkandebug.cpp" />
<ClCompile Include="..\base\vulkanexamplebase.cpp" />
<ClCompile Include="..\base\vulkantools.cpp" />
<ClCompile Include="raytracing.cpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\base\vulkandebug.h" />
<ClInclude Include="..\base\vulkanexamplebase.h" />
<ClInclude Include="..\base\vulkantools.h" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View file

@ -0,0 +1,42 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hh;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav</Extensions>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\base\vulkandebug.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\base\vulkanexamplebase.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\base\vulkantools.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="raytracing.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\base\vulkandebug.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\base\vulkanexamplebase.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\base\vulkantools.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
</Project>

View file

@ -59,6 +59,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "shadowmapping", "shadowmapp
EndProject EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "particlefire", "particlefire\particlefire.vcxproj", "{A8DDE46D-0C36-49E5-83CB-19FF69493FA0}" Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "particlefire", "particlefire\particlefire.vcxproj", "{A8DDE46D-0C36-49E5-83CB-19FF69493FA0}"
EndProject EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "raytracing", "raytracing\raytracing.vcxproj", "{8B1C24E5-CC00-484C-9F6F-8FFCBDA3AA30}"
EndProject
Global Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64 Debug|x64 = Debug|x64
@ -177,6 +179,10 @@ Global
{A8DDE46D-0C36-49E5-83CB-19FF69493FA0}.Debug|x64.Build.0 = Debug|x64 {A8DDE46D-0C36-49E5-83CB-19FF69493FA0}.Debug|x64.Build.0 = Debug|x64
{A8DDE46D-0C36-49E5-83CB-19FF69493FA0}.Release|x64.ActiveCfg = Release|x64 {A8DDE46D-0C36-49E5-83CB-19FF69493FA0}.Release|x64.ActiveCfg = Release|x64
{A8DDE46D-0C36-49E5-83CB-19FF69493FA0}.Release|x64.Build.0 = Release|x64 {A8DDE46D-0C36-49E5-83CB-19FF69493FA0}.Release|x64.Build.0 = Release|x64
{8B1C24E5-CC00-484C-9F6F-8FFCBDA3AA30}.Debug|x64.ActiveCfg = Debug|x64
{8B1C24E5-CC00-484C-9F6F-8FFCBDA3AA30}.Debug|x64.Build.0 = Debug|x64
{8B1C24E5-CC00-484C-9F6F-8FFCBDA3AA30}.Release|x64.ActiveCfg = Release|x64
{8B1C24E5-CC00-484C-9F6F-8FFCBDA3AA30}.Release|x64.Build.0 = Release|x64
EndGlobalSection EndGlobalSection
GlobalSection(SolutionProperties) = preSolution GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE HideSolutionNode = FALSE