Heavily reworked this sample

Code cleanup, code restructuring, simplified and lots of new code comments
This commit is contained in:
Sascha Willems 2024-01-12 12:45:14 +01:00
parent 44ff7a1a9d
commit d82ebc8f32
5 changed files with 369 additions and 571 deletions

View file

@ -1,5 +1,11 @@
/*
* Vulkan Example - Compute shader ray tracing
* Vulkan Example - Compute shader based ray tracing
*
* This samples implements a basic ray tracer with materials and reflections using a compute shader
* Shader storage buffers are used to pass geometry information for spheres and planes to the computer shader
* The compute shader then uses these as the scene geometry for ray tracing and outputs the results to a storage image
* The graphics part of the sample then displays that image full screen
* Not to be confused with actual hardware accelerated ray tracing
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
@ -8,44 +14,37 @@
#include "vulkanexamplebase.h"
#if defined(__ANDROID__)
#define TEX_DIM 1024
#else
#define TEX_DIM 2048
#endif
class VulkanExample : public VulkanExampleBase
{
public:
vks::Texture textureComputeTarget;
// The compute shader will store the ray traced output to a storage image
vks::Texture storageImage{};
// Resources for the graphics part of the example
struct {
VkDescriptorSetLayout descriptorSetLayout; // Raytraced image display shader binding layout
VkDescriptorSet descriptorSetPreCompute; // Raytraced image display shader bindings before compute shader image manipulation
VkDescriptorSet descriptorSet; // Raytraced image display shader bindings after compute shader image manipulation
VkPipeline pipeline; // Raytraced image display pipeline
VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline
// Resources for the graphics part of the example. The graphics pipeline simply displays the compute shader output
struct Graphics {
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
} graphics;
// Resources for the compute part of the example
struct {
struct {
vks::Buffer spheres; // (Shader) storage buffer object with scene spheres
vks::Buffer planes; // (Shader) storage buffer object with scene planes
} storageBuffers;
vks::Buffer uniformBuffer; // Uniform buffer object containing scene data
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
VkFence fence; // Synchronization fence to avoid rewriting compute CB if still in use
VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout
VkDescriptorSet descriptorSet; // Compute shader bindings
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
VkPipeline pipeline; // Compute raytracing pipeline
struct UBOCompute { // Compute shader uniform block object
struct Compute {
// Object properties for planes and spheres are passed via a shade storage buffer
// There is no vertex data, the compute shader calculates the primitives on the fly
vks::Buffer objectStorageBuffer;
vks::Buffer uniformBuffer; // Uniform buffer object containing scene parameters
VkQueue queue{ VK_NULL_HANDLE }; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool{ VK_NULL_HANDLE }; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer{ VK_NULL_HANDLE }; // Command buffer storing the dispatch commands and barriers
VkFence fence{ VK_NULL_HANDLE }; // Synchronization fence to avoid rewriting compute CB if still in use
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Compute shader binding layout
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; // Compute shader bindings
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; // Layout of the compute pipeline
VkPipeline pipeline{ VK_NULL_HANDLE }; // Compute raytracing pipeline
struct UniformDataCompute { // Compute shader uniform block object
glm::vec3 lightPos;
float aspectRatio; // Aspect ratio of the viewport
float aspectRatio{ 1.0f };
glm::vec4 fogColor = glm::vec4(0.0f);
struct {
glm::vec3 pos = glm::vec3(0.0f, 0.0f, 4.0f);
@ -53,33 +52,31 @@ public:
float fov = 10.0f;
} camera;
glm::mat4 _pad;
} ubo;
} uniformData;
} compute;
// SSBO sphere declaration
struct Sphere { // Shader uses std140 layout (so we only use vec4 instead of vec3)
glm::vec3 pos;
float radius;
glm::vec3 diffuse;
float specular;
uint32_t id; // Id used to identify sphere for raytracing
glm::ivec3 _pad;
// Definitions for scene objects
// The sample uses spheres and planes that are passed to the compute shader via a shader storage buffer
// The computer shader uses the object type to select different calculations
enum class SceneObjectType { Sphere = 0, Plane = 1 };
// Spheres and planes are described by different properties, we use a union for this
union SceneObjectProperty {
glm::vec4 positionAndRadius;
glm::vec4 normalAndDistance;
};
// SSBO plane declaration
struct Plane {
glm::vec3 normal;
float distance;
struct SceneObject {
SceneObjectProperty objectProperties;
glm::vec3 diffuse;
float specular;
uint32_t id;
glm::ivec3 _pad;
float specular{ 1.0f };
uint32_t id{ 0 };
uint32_t objectType{ 0 };
// Due to alignment rules we need to pad to make the element align at 16-bytes
glm::ivec2 _pad;
};
VulkanExample() : VulkanExampleBase()
{
title = "Compute shader ray tracing";
compute.ubo.aspectRatio = (float)width / (float)height;
timerSpeed *= 0.25f;
camera.type = Camera::CameraType::lookat;
@ -97,41 +94,51 @@ public:
~VulkanExample()
{
// Graphics
vkDestroyPipeline(device, graphics.pipeline, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
if (device) {
// Graphics
vkDestroyPipeline(device, graphics.pipeline, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
// Compute
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
compute.uniformBuffer.destroy();
compute.storageBuffers.spheres.destroy();
compute.storageBuffers.planes.destroy();
// Compute
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
compute.uniformBuffer.destroy();
compute.objectStorageBuffer.destroy();
textureComputeTarget.destroy();
storageImage.destroy();
}
}
// Prepare a texture target that is used to store compute shader calculations
void prepareTextureTarget(vks::Texture *tex, uint32_t width, uint32_t height, VkFormat format)
{
// Prepare a storage image that is used to store the compute shader ray tracing output
void prepareStorageImage()
{
#if defined(__ANDROID__)
// Use a smaller image on Android for performance reasons
const uint32_t textureSize = 1024;
#else
const uint32_t textureSize = 2048;
#endif
const VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
// Get device properties for the requested texture format
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Check if requested image format supports image storage operations
// Check if requested image format supports image storage operations required for storing pixesl fromn the compute shader
assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT);
// Prepare blit target texture
tex->width = width;
tex->height = height;
storageImage.width = textureSize;
storageImage.height = textureSize;
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { width, height, 1 };
imageCreateInfo.extent = { textureSize, textureSize, 1 };
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
@ -144,23 +151,40 @@ public:
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image));
vkGetImageMemoryRequirements(device, tex->image, &memReqs);
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &storageImage.image));
vkGetImageMemoryRequirements(device, storageImage.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0));
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &storageImage.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.deviceMemory, 0));
VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
tex->imageLayout = VK_IMAGE_LAYOUT_GENERAL;
vks::tools::setImageLayout(
layoutCmd,
tex->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
tex->imageLayout);
storageImage.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
vks::tools::setImageLayout(layoutCmd, storageImage.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, storageImage.imageLayout);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
layoutCmd,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vulkanDevice->flushCommandBuffer(layoutCmd, queue, true);
// Create sampler
@ -177,21 +201,21 @@ public:
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &tex->sampler));
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &storageImage.sampler));
// Create image view
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
view.image = tex->image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &tex->view));
view.image = storageImage.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &storageImage.view));
// Initialize a descriptor for later use
tex->descriptor.imageLayout = tex->imageLayout;
tex->descriptor.imageView = tex->view;
tex->descriptor.sampler = tex->sampler;
tex->device = vulkanDevice;
storageImage.descriptor.imageLayout = storageImage.imageLayout;
storageImage.descriptor.imageView = storageImage.view;
storageImage.descriptor.sampler = storageImage.sampler;
storageImage.device = vulkanDevice;
}
void buildCommandBuffers()
@ -223,7 +247,7 @@ public:
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = textureComputeTarget.image;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
@ -308,7 +332,7 @@ public:
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = textureComputeTarget.image;
imageMemoryBarrier.image = storageImage.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
@ -330,7 +354,7 @@ public:
vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline);
vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0);
vkCmdDispatch(compute.commandBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1);
vkCmdDispatch(compute.commandBuffer, storageImage.width / 16, storageImage.height / 16, 1);
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
@ -352,248 +376,120 @@ public:
vkEndCommandBuffer(compute.commandBuffer);
}
uint32_t currentId = 0; // Id used to identify objects by the ray tracing shader
Sphere newSphere(glm::vec3 pos, float radius, glm::vec3 diffuse, float specular)
{
Sphere sphere;
sphere.id = currentId++;
sphere.pos = pos;
sphere.radius = radius;
sphere.diffuse = diffuse;
sphere.specular = specular;
return sphere;
}
Plane newPlane(glm::vec3 normal, float distance, glm::vec3 diffuse, float specular)
{
Plane plane;
plane.id = currentId++;
plane.normal = normal;
plane.distance = distance;
plane.diffuse = diffuse;
plane.specular = specular;
return plane;
}
// Setup and fill the compute shader storage buffers containing primitives for the raytraced scene
// Setup and fill the compute shader storage buffes containing object definitions for the raytraced scene
void prepareStorageBuffers()
{
// Spheres
std::vector<Sphere> spheres;
spheres.push_back(newSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f));
spheres.push_back(newSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f));
spheres.push_back(newSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f));
VkDeviceSize storageBufferSize = spheres.size() * sizeof(Sphere);
// Id used to identify objects by the ray tracing shader
uint32_t currentId = 0;
// Stage
vks::Buffer stagingBuffer;
std::vector<SceneObject> sceneObjects{};
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
spheres.data());
// Add some spheres to the scene
//std::vector<Sphere> spheres;
// Lambda to simplify object creation
auto addSphere = [&sceneObjects, &currentId](glm::vec3 pos, float radius, glm::vec3 diffuse, float specular) {
SceneObject sphere{};
sphere.id = currentId++;
sphere.objectProperties.positionAndRadius = glm::vec4(pos, radius);
sphere.diffuse = diffuse;
sphere.specular = specular;
sphere.objectType = (uint32_t)SceneObjectType::Sphere;
sceneObjects.push_back(sphere);
};
auto addPlane = [&sceneObjects, &currentId](glm::vec3 normal, float distance, glm::vec3 diffuse, float specular) {
SceneObject plane{};
plane.id = currentId++;
plane.objectProperties.normalAndDistance = glm::vec4(normal, distance);
plane.diffuse = diffuse;
plane.specular = specular;
plane.objectType = (uint32_t)SceneObjectType::Plane;
sceneObjects.push_back(plane);
};
addSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
addSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f);
addSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f);
vulkanDevice->createBuffer(
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.spheres,
storageBufferSize);
// Copy to staging buffer
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.spheres.buffer, 1, &copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
// Planes
std::vector<Plane> planes;
const float roomDim = 4.0f;
planes.push_back(newPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f));
storageBufferSize = planes.size() * sizeof(Plane);
addPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f);
addPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f);
addPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f);
addPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f);
// Stage
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
planes.data());
VkDeviceSize storageBufferSize = sceneObjects.size() * sizeof(SceneObject);
vulkanDevice->createBuffer(
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.planes,
storageBufferSize);
// Copy to staging buffer
copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.planes.buffer, 1, &copyRegion);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute)
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
imageMemoryBarrier.image = textureComputeTarget.image;
imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
imageMemoryBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
vkCmdPipelineBarrier(
copyCmd,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
// Copy the data to the device
vks::Buffer stagingBuffer;
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, sceneObjects.data());
vulkanDevice->createBuffer(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.objectStorageBuffer, storageBufferSize);
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = { 0, 0, storageBufferSize};
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.objectStorageBuffer.buffer, 1, &copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
// The descriptor pool will be shared between graphics and compute
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), // Compute UBO
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Graphics image samplers
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1), // Storage image for ray traced image output
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2), // Storage buffer for the scene primitives
// @todo: probably wrong
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
// Prepare the graphics resources used to display the ray traced output of the compute shader
void prepareGraphics()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
0)
};
// Setup descriptors
// The graphics pipeline uses one set and one binding
// Binding 0: Storage image with raytraced output as a sampled image for displaying it
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &storageImage.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&graphics.descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Fragment shader texture sampler
vks::initializers::writeDescriptorSet(
graphics.descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0,
&textureComputeTarget.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_FRONT_BIT,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_FALSE,
VK_FALSE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Display pipeline
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computeraytracing/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computeraytracing/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
graphics.pipelineLayout,
renderPass,
0);
VkPipelineVertexInputStateCreateInfo emptyInputState{};
emptyInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
emptyInputState.vertexAttributeDescriptionCount = 0;
emptyInputState.pVertexAttributeDescriptions = nullptr;
emptyInputState.vertexBindingDescriptionCount = 0;
emptyInputState.pVertexBindingDescriptions = nullptr;
pipelineCreateInfo.pVertexInputState = &emptyInputState;
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &emptyInputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
@ -604,11 +500,10 @@ public:
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.renderPass = renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline));
}
// Prepare the compute pipeline that generates the ray traced image
// Prepare the compute resources that generates the ray traced image
void prepareCompute()
{
// Create a compute capable device queue
@ -622,89 +517,39 @@ public:
queueCreateInfo.queueCount = 1;
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Setup descriptors
// The compute pipeline uses one set and four bindings
// Binding 0: Storage image for raytraced output
// Binding 1: Uniform buffer with parameters
// Binding 2: Shader storage buffer with scene object definitions
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Storage image (raytraced output)
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_COMPUTE_BIT,
0),
// Binding 1: Uniform buffer block
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
1),
// Binding 1: Shader storage buffer for the spheres
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
2),
// Binding 1: Shader storage buffer for the planes
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
3)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&compute.descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&compute.descriptorSetLayout,
1);
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets =
{
// Binding 0: Output storage image
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
0,
&textureComputeTarget.descriptor),
// Binding 1: Uniform buffer block
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1,
&compute.uniformBuffer.descriptor),
// Binding 2: Shader storage buffer for the spheres
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
2,
&compute.storageBuffers.spheres.descriptor),
// Binding 2: Shader storage buffer for the planes
vks::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
3,
&compute.storageBuffers.planes.descriptor)
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 0, &storageImage.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2, &compute.objectStorageBuffer.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, nullptr);
// Create compute shader pipelines
VkComputePipelineCreateInfo computePipelineCreateInfo =
vks::initializers::computePipelineCreateInfo(
compute.pipelineLayout,
0);
// Create the compute shader pipeline
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0);
computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computeraytracing/raytracing.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT);
VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline));
// Separate command pool as queue family for compute may be different than graphics
// Separate command pool as queue family for compute may be different from the graphics one
VkCommandPoolCreateInfo cmdPoolInfo = {};
cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute;
@ -712,12 +557,7 @@ public:
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vks::initializers::commandBufferAllocateInfo(
compute.commandPool,
VK_COMMAND_BUFFER_LEVEL_PRIMARY,
1);
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer));
// Fence for compute CB sync
@ -728,30 +568,37 @@ public:
buildComputeCommandBuffer();
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Compute shader parameter uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&compute.uniformBuffer,
sizeof(compute.ubo));
updateUniformBuffers();
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformDataCompute));
}
void updateUniformBuffers()
{
compute.ubo.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.ubo.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
compute.ubo.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.ubo.camera.pos = camera.position * -1.0f;
compute.uniformData.aspectRatio = (float)width / (float)height;
compute.uniformData.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
compute.uniformData.camera.pos = camera.position * -1.0f;
VK_CHECK_RESULT(compute.uniformBuffer.map());
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformDataCompute));
compute.uniformBuffer.unmap();
}
void prepare()
{
VulkanExampleBase::prepare();
prepareStorageImage();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorPool();
prepareGraphics();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
void draw()
{
// Submit compute commands
@ -775,36 +622,12 @@ public:
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
prepareTextureTarget(&textureComputeTarget, TEX_DIM, TEX_DIM, VK_FORMAT_R8G8B8A8_UNORM);
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused)
{
updateUniformBuffers();
}
}
virtual void viewChanged()
{
compute.ubo.aspectRatio = (float)width / (float)height;
updateUniformBuffers();
draw();
}
};

View file

@ -1,3 +1,5 @@
// Copyright 2023 Sascha Willems
// Shader is looseley based on the ray tracing coding session by Inigo Quilez (www.iquilezles.org)
#version 450
@ -13,6 +15,9 @@ layout (binding = 0, rgba8) uniform writeonly image2D resultImage;
#define REFLECTIONSTRENGTH 0.4
#define REFLECTIONFALLOFF 0.5
#define SceneObjectTypeSphere 0
#define SceneObjectTypePlane 1
struct Camera
{
vec3 pos;
@ -29,32 +34,18 @@ layout (binding = 1) uniform UBO
mat4 rotMat;
} ubo;
struct Sphere
struct SceneObject
{
vec3 pos;
float radius;
vec4 objectProperties;
vec3 diffuse;
float specular;
int id;
int objectType;
};
struct Plane
layout (std140, binding = 2) buffer SceneObjects
{
vec3 normal;
float distance;
vec3 diffuse;
float specular;
int id;
};
layout (std140, binding = 2) buffer Spheres
{
Sphere spheres[ ];
};
layout (std140, binding = 3) buffer Planes
{
Plane planes[ ];
SceneObject sceneObjects[ ];
};
void reflectRay(inout vec3 rayD, in vec3 mormal)
@ -78,11 +69,11 @@ float lightSpecular(vec3 normal, vec3 lightDir, float specularFactor)
// Sphere ===========================================================
float sphereIntersect(in vec3 rayO, in vec3 rayD, in Sphere sphere)
float sphereIntersect(in vec3 rayO, in vec3 rayD, in SceneObject sphere)
{
vec3 oc = rayO - sphere.pos;
vec3 oc = rayO - sphere.objectProperties.xyz;
float b = 2.0 * dot(oc, rayD);
float c = dot(oc, oc) - sphere.radius*sphere.radius;
float c = dot(oc, oc) - sphere.objectProperties.w * sphere.objectProperties.w;
float h = b*b - 4.0*c;
if (h < 0.0)
{
@ -93,21 +84,21 @@ float sphereIntersect(in vec3 rayO, in vec3 rayD, in Sphere sphere)
return t;
}
vec3 sphereNormal(in vec3 pos, in Sphere sphere)
vec3 sphereNormal(in vec3 pos, in SceneObject sphere)
{
return (pos - sphere.pos) / sphere.radius;
return (pos - sphere.objectProperties.xyz) / sphere.objectProperties.w;
}
// Plane ===========================================================
float planeIntersect(vec3 rayO, vec3 rayD, Plane plane)
float planeIntersect(vec3 rayO, vec3 rayD, SceneObject plane)
{
float d = dot(rayD, plane.normal);
float d = dot(rayD, plane.objectProperties.xyz);
if (d == 0.0)
return 0.0;
float t = -(plane.distance + dot(rayO, plane.normal)) / d;
float t = -(plane.objectProperties.w + dot(rayO, plane.objectProperties.xyz)) / d;
if (t < 0.0)
return 0.0;
@ -119,40 +110,48 @@ float planeIntersect(vec3 rayO, vec3 rayD, Plane plane)
int intersect(in vec3 rayO, in vec3 rayD, inout float resT)
{
int id = -1;
float t = -1000.0f;
for (int i = 0; i < spheres.length(); i++)
for (int i = 0; i < sceneObjects.length(); i++)
{
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if ((tSphere > EPSILON) && (tSphere < resT))
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
t = sphereIntersect(rayO, rayD, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
t = planeIntersect(rayO, rayD, sceneObjects[i]);
}
if ((t > EPSILON) && (t < resT))
{
id = spheres[i].id;
resT = tSphere;
id = sceneObjects[i].id;
resT = t;
}
}
for (int i = 0; i < planes.length(); i++)
{
float tplane = planeIntersect(rayO, rayD, planes[i]);
if ((tplane > EPSILON) && (tplane < resT))
{
id = planes[i].id;
resT = tplane;
}
}
return id;
}
float calcShadow(in vec3 rayO, in vec3 rayD, in int objectId, inout float t)
{
for (int i = 0; i < spheres.length(); i++)
for (int i = 0; i < sceneObjects.length(); i++)
{
if (spheres[i].id == objectId)
if (sceneObjects[i].id == objectId)
continue;
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if ((tSphere > EPSILON) && (tSphere < t))
float tLoc = MAXLEN;
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
tLoc = sphereIntersect(rayO, rayD, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
tLoc = planeIntersect(rayO, rayD, sceneObjects[i]);
}
if ((tLoc > EPSILON) && (tLoc < t))
{
t = tSphere;
t = tLoc;
return SHADOW;
}
}
@ -180,30 +179,22 @@ vec3 renderScene(inout vec3 rayO, inout vec3 rayD, inout int id)
vec3 pos = rayO + t * rayD;
vec3 lightVec = normalize(ubo.lightPos - pos);
vec3 normal;
// Planes
// Spheres
for (int i = 0; i < planes.length(); i++)
for (int i = 0; i < sceneObjects.length(); i++)
{
if (objectID == planes[i].id)
{
normal = planes[i].normal;
if (objectID == sceneObjects[i].id) {
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
normal = sphereNormal(pos, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
normal = sceneObjects[i].objectProperties.xyz;
}
// Lighting
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, planes[i].specular);
color = diffuse * planes[i].diffuse + specular;
}
}
for (int i = 0; i < spheres.length(); i++)
{
if (objectID == spheres[i].id)
{
normal = sphereNormal(pos, spheres[i]);
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, spheres[i].specular);
color = diffuse * spheres[i].diffuse + specular;
float specular = lightSpecular(normal, lightVec, sceneObjects[i].specular);
color = diffuse * sceneObjects[i].diffuse + specular;
}
}

View file

@ -1,4 +1,5 @@
// Copyright 2020 Google LLC
// Copyright 2023 Sascha Willems
// Shader is looseley based on the ray tracing coding session by Inigo Quilez (www.iquilezles.org)
@ -12,6 +13,9 @@ RWTexture2D<float4> resultImage : register(u0);
#define REFLECTIONSTRENGTH 0.4
#define REFLECTIONFALLOFF 0.5
#define SceneObjectTypeSphere 0
#define SceneObjectTypePlane 1
struct Camera
{
float3 pos;
@ -30,26 +34,16 @@ struct UBO
cbuffer ubo : register(b1) { UBO ubo; }
struct Sphere
struct SceneObject
{
float3 pos;
float radius;
float4 objectProperties;
float3 diffuse;
float specular;
int id;
int objectType;
};
struct Plane
{
float3 normal;
float distance;
float3 diffuse;
float specular;
int id;
};
StructuredBuffer<Sphere> spheres : register(t2);
StructuredBuffer<Plane> planes : register(t3);
StructuredBuffer<SceneObject> sceneObjects : register(t2);
void reflectRay(inout float3 rayD, in float3 mormal)
{
@ -72,11 +66,11 @@ float lightSpecular(float3 normal, float3 lightDir, float specularFactor)
// Sphere ===========================================================
float sphereIntersect(in float3 rayO, in float3 rayD, in Sphere sphere)
float sphereIntersect(in float3 rayO, in float3 rayD, in SceneObject sphere)
{
float3 oc = rayO - sphere.pos;
float3 oc = rayO - sphere.objectProperties.xyz;
float b = 2.0 * dot(oc, rayD);
float c = dot(oc, oc) - sphere.radius*sphere.radius;
float c = dot(oc, oc) - sphere.objectProperties.w * sphere.objectProperties.w;
float h = b*b - 4.0*c;
if (h < 0.0)
{
@ -87,21 +81,21 @@ float sphereIntersect(in float3 rayO, in float3 rayD, in Sphere sphere)
return t;
}
float3 sphereNormal(in float3 pos, in Sphere sphere)
float3 sphereNormal(in float3 pos, in SceneObject sphere)
{
return (pos - sphere.pos) / sphere.radius;
return (pos - sphere.objectProperties.xyz) / sphere.objectProperties.w;
}
// Plane ===========================================================
float planeIntersect(float3 rayO, float3 rayD, Plane plane)
float planeIntersect(float3 rayO, float3 rayD, SceneObject plane)
{
float d = dot(rayD, plane.normal);
float d = dot(rayD, plane.objectProperties.xyz);
if (d == 0.0)
return 0.0;
float t = -(plane.distance + dot(rayO, plane.normal)) / d;
float t = -(plane.objectProperties.w + dot(rayO, plane.objectProperties.xyz)) / d;
if (t < 0.0)
return 0.0;
@ -113,33 +107,25 @@ float planeIntersect(float3 rayO, float3 rayD, Plane plane)
int intersect(in float3 rayO, in float3 rayD, inout float resT)
{
int id = -1;
float t = MAXLEN;
uint spheresLength;
uint spheresStride;
spheres.GetDimensions(spheresLength, spheresStride);
uint sceneObjectsLength;
uint sceneObjectsStride;
sceneObjects.GetDimensions(sceneObjectsLength, sceneObjectsStride);
int i;
for (i = 0; i < spheresLength; i++)
{
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if ((tSphere > EPSILON) && (tSphere < resT))
{
id = spheres[i].id;
resT = tSphere;
for (int i = 0; i < sceneObjectsLength; i++) {
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
t = sphereIntersect(rayO, rayD, sceneObjects[i]);
}
}
uint planesLength;
uint planesStride;
planes.GetDimensions(planesLength, planesStride);
for (i = 0; i < planesLength; i++)
{
float tplane = planeIntersect(rayO, rayD, planes[i]);
if ((tplane > EPSILON) && (tplane < resT))
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
t = planeIntersect(rayO, rayD, sceneObjects[i]);
}
if ((t > EPSILON) && (t < resT))
{
id = planes[i].id;
resT = tplane;
id = sceneObjects[i].id;
resT = t;
}
}
@ -148,18 +134,29 @@ int intersect(in float3 rayO, in float3 rayD, inout float resT)
float calcShadow(in float3 rayO, in float3 rayD, in int objectId, inout float t)
{
uint spheresLength;
uint spheresStride;
spheres.GetDimensions(spheresLength, spheresStride);
uint sceneObjectsLength;
uint sceneObjectsStride;
sceneObjects.GetDimensions(sceneObjectsLength, sceneObjectsStride);
for (int i = 0; i < spheresLength; i++)
{
if (spheres[i].id == objectId)
for (int i = 0; i < sceneObjectsLength; i++) {
if (sceneObjects[i].id == objectId)
continue;
float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if ((tSphere > EPSILON) && (tSphere < t))
float tLoc = MAXLEN;
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere)
{
t = tSphere;
tLoc = sphereIntersect(rayO, rayD, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane)
{
tLoc = planeIntersect(rayO, rayD, sceneObjects[i]);
}
if ((tLoc > EPSILON) && (tLoc < t))
{
t = tLoc;
return SHADOW;
}
}
@ -188,38 +185,25 @@ float3 renderScene(inout float3 rayO, inout float3 rayD, inout int id)
float3 lightVec = normalize(ubo.lightPos - pos);
float3 normal;
// Planes
uint sceneObjectsLength;
uint sceneObjectsStride;
sceneObjects.GetDimensions(sceneObjectsLength, sceneObjectsStride);
// Spheres
uint planesLength;
uint planesStride;
planes.GetDimensions(planesLength, planesStride);
int i;
for (i = 0; i < planesLength; i++)
{
if (objectID == planes[i].id)
for (int i = 0; i < sceneObjectsLength; i++) {
if (objectID == sceneObjects[i].id)
{
normal = planes[i].normal;
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
normal = sphereNormal(pos, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
normal = sceneObjects[i].objectProperties.xyz;
}
// Lighting
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, planes[i].specular);
color = diffuse * planes[i].diffuse + specular;
}
}
uint spheresLength;
uint spheresStride;
spheres.GetDimensions(spheresLength, spheresStride);
for (i = 0; i < spheresLength; i++)
{
if (objectID == spheres[i].id)
{
normal = sphereNormal(pos, spheres[i]);
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, spheres[i].specular);
color = diffuse * spheres[i].diffuse + specular;
float specular = lightSpecular(normal, lightVec, sceneObjects[i].specular);
color = diffuse * sceneObjects[i].diffuse + specular;
}
}