Added cube map array sample
This commit is contained in:
parent
f49c3d9ede
commit
dceb349849
23 changed files with 1065 additions and 11 deletions
|
|
@ -117,6 +117,7 @@ set(EXAMPLES
|
|||
texture3d
|
||||
texturearray
|
||||
texturecubemap
|
||||
texturecubemaparray
|
||||
texturemipmapgen
|
||||
texturesparseresidency
|
||||
triangle
|
||||
|
|
|
|||
591
examples/texturecubemaparray/texturecubemaparray.cpp
Normal file
591
examples/texturecubemaparray/texturecubemaparray.cpp
Normal file
|
|
@ -0,0 +1,591 @@
|
|||
/*
|
||||
* Vulkan Example - Cube map array texture loading and displaying
|
||||
*
|
||||
* Copyright (C) 2020 by Sascha Willems - www.saschawillems.de
|
||||
*
|
||||
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
|
||||
#define GLM_FORCE_RADIANS
|
||||
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
|
||||
#include <vulkan/vulkan.h>
|
||||
#include "vulkanexamplebase.h"
|
||||
#include "VulkanBuffer.hpp"
|
||||
#include "VulkanTexture.hpp"
|
||||
#include "VulkanModel.hpp"
|
||||
#include <ktx.h>
|
||||
#include <ktxvulkan.h>
|
||||
|
||||
#define ENABLE_VALIDATION false
|
||||
|
||||
class VulkanExample : public VulkanExampleBase
|
||||
{
|
||||
public:
|
||||
bool displaySkybox = true;
|
||||
|
||||
vks::Texture cubeMapArray;
|
||||
|
||||
// Vertex layout for the models
|
||||
vks::VertexLayout vertexLayout = vks::VertexLayout({
|
||||
vks::VERTEX_COMPONENT_POSITION,
|
||||
vks::VERTEX_COMPONENT_NORMAL,
|
||||
vks::VERTEX_COMPONENT_UV,
|
||||
});
|
||||
struct Meshes {
|
||||
vks::Model skybox;
|
||||
std::vector<vks::Model> objects;
|
||||
int32_t objectIndex = 0;
|
||||
} models;
|
||||
|
||||
struct {
|
||||
vks::Buffer object;
|
||||
vks::Buffer skybox;
|
||||
} uniformBuffers;
|
||||
|
||||
struct ShaderData {
|
||||
glm::mat4 projection;
|
||||
glm::mat4 modelView;
|
||||
glm::mat4 inverseModelview;
|
||||
float lodBias = 0.0f;
|
||||
int cubeMapIndex = 1;
|
||||
} shaderData;
|
||||
|
||||
struct {
|
||||
VkPipeline skybox;
|
||||
VkPipeline reflect;
|
||||
} pipelines;
|
||||
|
||||
struct {
|
||||
VkDescriptorSet object;
|
||||
VkDescriptorSet skybox;
|
||||
} descriptorSets;
|
||||
|
||||
VkPipelineLayout pipelineLayout;
|
||||
VkDescriptorSetLayout descriptorSetLayout;
|
||||
|
||||
std::vector<std::string> objectNames;
|
||||
|
||||
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
|
||||
{
|
||||
title = "Cube map textures";
|
||||
camera.type = Camera::CameraType::lookat;
|
||||
camera.setPosition(glm::vec3(0.0f, 0.0f, -4.0f));
|
||||
camera.setRotation(glm::vec3(-7.25f, -120.0f, 0.0f));
|
||||
camera.setRotationSpeed(0.25f);
|
||||
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
|
||||
settings.overlay = true;
|
||||
}
|
||||
|
||||
~VulkanExample()
|
||||
{
|
||||
// Clean up texture resources
|
||||
vkDestroyImageView(device, cubeMapArray.view, nullptr);
|
||||
vkDestroyImage(device, cubeMapArray.image, nullptr);
|
||||
vkDestroySampler(device, cubeMapArray.sampler, nullptr);
|
||||
vkFreeMemory(device, cubeMapArray.deviceMemory, nullptr);
|
||||
|
||||
vkDestroyPipeline(device, pipelines.skybox, nullptr);
|
||||
vkDestroyPipeline(device, pipelines.reflect, nullptr);
|
||||
|
||||
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
|
||||
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
|
||||
|
||||
for (auto& model : models.objects) {
|
||||
model.destroy();
|
||||
}
|
||||
models.skybox.destroy();
|
||||
|
||||
uniformBuffers.object.destroy();
|
||||
uniformBuffers.skybox.destroy();
|
||||
}
|
||||
|
||||
// Enable physical device features required for this example
|
||||
virtual void getEnabledFeatures()
|
||||
{
|
||||
if (deviceFeatures.imageCubeArray) {
|
||||
enabledFeatures.imageCubeArray = VK_TRUE;
|
||||
} else {
|
||||
vks::tools::exitFatal("Selected GPU does not support cube map arrays!", VK_ERROR_FEATURE_NOT_PRESENT);
|
||||
}
|
||||
enabledFeatures.imageCubeArray = VK_TRUE;
|
||||
if (deviceFeatures.samplerAnisotropy) {
|
||||
enabledFeatures.samplerAnisotropy = VK_TRUE;
|
||||
}
|
||||
};
|
||||
|
||||
void loadCubemapArray(std::string filename, VkFormat format, bool forceLinearTiling)
|
||||
{
|
||||
ktxResult result;
|
||||
ktxTexture* ktxTexture;
|
||||
|
||||
#if defined(__ANDROID__)
|
||||
// Textures are stored inside the apk on Android (compressed)
|
||||
// So they need to be loaded via the asset manager
|
||||
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
|
||||
if (!asset) {
|
||||
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
|
||||
}
|
||||
size_t size = AAsset_getLength(asset);
|
||||
assert(size > 0);
|
||||
|
||||
ktx_uint8_t *textureData = new ktx_uint8_t[size];
|
||||
AAsset_read(asset, textureData, size);
|
||||
AAsset_close(asset);
|
||||
result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
||||
delete[] textureData;
|
||||
#else
|
||||
if (!vks::tools::fileExists(filename)) {
|
||||
vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1);
|
||||
}
|
||||
result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture);
|
||||
#endif
|
||||
assert(result == KTX_SUCCESS);
|
||||
|
||||
// Get properties required for using and upload texture data from the ktx texture object
|
||||
cubeMapArray.width = ktxTexture->baseWidth;
|
||||
cubeMapArray.height = ktxTexture->baseHeight;
|
||||
cubeMapArray.mipLevels = ktxTexture->numLevels;
|
||||
cubeMapArray.layerCount = ktxTexture->numLayers;
|
||||
ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture);
|
||||
ktx_size_t ktxTextureSize = ktxTexture_GetSize(ktxTexture);
|
||||
|
||||
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
|
||||
VkMemoryRequirements memReqs;
|
||||
|
||||
// Create a host-visible staging buffer that contains the raw image data
|
||||
VkBuffer stagingBuffer;
|
||||
VkDeviceMemory stagingMemory;
|
||||
|
||||
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
|
||||
bufferCreateInfo.size = ktxTextureSize;
|
||||
// This buffer is used as a transfer source for the buffer copy
|
||||
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
||||
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
|
||||
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
|
||||
|
||||
// Get memory requirements for the staging buffer (alignment, memory type bits)
|
||||
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
|
||||
memAllocInfo.allocationSize = memReqs.size;
|
||||
// Get memory type index for a host visible buffer
|
||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
|
||||
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
|
||||
|
||||
// Copy texture data into staging buffer
|
||||
uint8_t *data;
|
||||
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
|
||||
memcpy(data, ktxTextureData, ktxTextureSize);
|
||||
vkUnmapMemory(device, stagingMemory);
|
||||
|
||||
// Create optimal tiled target image
|
||||
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
|
||||
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
|
||||
imageCreateInfo.format = format;
|
||||
imageCreateInfo.mipLevels = cubeMapArray.mipLevels;
|
||||
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
||||
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
||||
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
|
||||
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
|
||||
imageCreateInfo.extent = { cubeMapArray.width, cubeMapArray.height, 1 };
|
||||
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
||||
// Cube faces count as array layers in Vulkan
|
||||
imageCreateInfo.arrayLayers = 6 * cubeMapArray.layerCount;
|
||||
// This flag is required for cube map images
|
||||
imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
|
||||
|
||||
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMapArray.image));
|
||||
|
||||
vkGetImageMemoryRequirements(device, cubeMapArray.image, &memReqs);
|
||||
|
||||
memAllocInfo.allocationSize = memReqs.size;
|
||||
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
|
||||
|
||||
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMapArray.deviceMemory));
|
||||
VK_CHECK_RESULT(vkBindImageMemory(device, cubeMapArray.image, cubeMapArray.deviceMemory, 0));
|
||||
|
||||
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
|
||||
|
||||
// Setup buffer copy regions for each face including all of its miplevels
|
||||
std::vector<VkBufferImageCopy> bufferCopyRegions;
|
||||
uint32_t offset = 0;
|
||||
|
||||
// Setup buffer copy regions to copy the data from the ktx file to our image
|
||||
for (uint32_t layer = 0; layer < ktxTexture->numLayers; layer++) {
|
||||
for (uint32_t face = 0; face < 6; face++) {
|
||||
for (uint32_t level = 0; level < ktxTexture->numLevels; level++) {
|
||||
ktx_size_t offset;
|
||||
KTX_error_code ret = ktxTexture_GetImageOffset(ktxTexture, level, layer, face, &offset);
|
||||
assert(ret == KTX_SUCCESS);
|
||||
VkBufferImageCopy bufferCopyRegion = {};
|
||||
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
bufferCopyRegion.imageSubresource.mipLevel = level;
|
||||
bufferCopyRegion.imageSubresource.baseArrayLayer = layer * 6 + face;
|
||||
bufferCopyRegion.imageSubresource.layerCount = 1;
|
||||
bufferCopyRegion.imageExtent.width = ktxTexture->baseWidth >> level;
|
||||
bufferCopyRegion.imageExtent.height = ktxTexture->baseHeight >> level;
|
||||
bufferCopyRegion.imageExtent.depth = 1;
|
||||
bufferCopyRegion.bufferOffset = offset;
|
||||
bufferCopyRegions.push_back(bufferCopyRegion);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Image barrier for optimal image (target)
|
||||
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
|
||||
VkImageSubresourceRange subresourceRange = {};
|
||||
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
|
||||
subresourceRange.baseMipLevel = 0;
|
||||
subresourceRange.levelCount = cubeMapArray.mipLevels;
|
||||
subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
|
||||
|
||||
vks::tools::setImageLayout(
|
||||
copyCmd,
|
||||
cubeMapArray.image,
|
||||
VK_IMAGE_LAYOUT_UNDEFINED,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
subresourceRange);
|
||||
|
||||
// Copy the cube map faces from the staging buffer to the optimal tiled image
|
||||
vkCmdCopyBufferToImage(
|
||||
copyCmd,
|
||||
stagingBuffer,
|
||||
cubeMapArray.image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
static_cast<uint32_t>(bufferCopyRegions.size()),
|
||||
bufferCopyRegions.data()
|
||||
);
|
||||
|
||||
// Change texture image layout to shader read after all faces have been copied
|
||||
cubeMapArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
|
||||
vks::tools::setImageLayout(
|
||||
copyCmd,
|
||||
cubeMapArray.image,
|
||||
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
|
||||
cubeMapArray.imageLayout,
|
||||
subresourceRange);
|
||||
|
||||
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
|
||||
|
||||
// Create sampler
|
||||
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
|
||||
sampler.magFilter = VK_FILTER_LINEAR;
|
||||
sampler.minFilter = VK_FILTER_LINEAR;
|
||||
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
|
||||
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
|
||||
sampler.addressModeV = sampler.addressModeU;
|
||||
sampler.addressModeW = sampler.addressModeU;
|
||||
sampler.mipLodBias = 0.0f;
|
||||
sampler.compareOp = VK_COMPARE_OP_NEVER;
|
||||
sampler.minLod = 0.0f;
|
||||
sampler.maxLod = cubeMapArray.mipLevels;
|
||||
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
|
||||
sampler.maxAnisotropy = 1.0f;
|
||||
if (vulkanDevice->features.samplerAnisotropy)
|
||||
{
|
||||
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
|
||||
sampler.anisotropyEnable = VK_TRUE;
|
||||
}
|
||||
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &cubeMapArray.sampler));
|
||||
|
||||
// Create the image view for a cube map array
|
||||
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
|
||||
view.viewType = VK_IMAGE_VIEW_TYPE_CUBE_ARRAY;
|
||||
view.format = format;
|
||||
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
|
||||
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
|
||||
view.subresourceRange.layerCount = 6 * cubeMapArray.layerCount;
|
||||
view.subresourceRange.levelCount = cubeMapArray.mipLevels;
|
||||
view.image = cubeMapArray.image;
|
||||
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &cubeMapArray.view));
|
||||
|
||||
// Clean up staging resources
|
||||
vkFreeMemory(device, stagingMemory, nullptr);
|
||||
vkDestroyBuffer(device, stagingBuffer, nullptr);
|
||||
ktxTexture_Destroy(ktxTexture);
|
||||
}
|
||||
|
||||
void buildCommandBuffers()
|
||||
{
|
||||
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
|
||||
|
||||
VkClearValue clearValues[2];
|
||||
clearValues[0].color = defaultClearColor;
|
||||
clearValues[1].depthStencil = { 1.0f, 0 };
|
||||
|
||||
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
|
||||
renderPassBeginInfo.renderPass = renderPass;
|
||||
renderPassBeginInfo.renderArea.offset.x = 0;
|
||||
renderPassBeginInfo.renderArea.offset.y = 0;
|
||||
renderPassBeginInfo.renderArea.extent.width = width;
|
||||
renderPassBeginInfo.renderArea.extent.height = height;
|
||||
renderPassBeginInfo.clearValueCount = 2;
|
||||
renderPassBeginInfo.pClearValues = clearValues;
|
||||
|
||||
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
|
||||
{
|
||||
// Set target frame buffer
|
||||
renderPassBeginInfo.framebuffer = frameBuffers[i];
|
||||
|
||||
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
|
||||
|
||||
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
|
||||
|
||||
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
|
||||
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
|
||||
|
||||
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
|
||||
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
|
||||
|
||||
VkDeviceSize offsets[1] = { 0 };
|
||||
|
||||
// Skybox
|
||||
if (displaySkybox)
|
||||
{
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.skybox.vertices.buffer, offsets);
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0);
|
||||
}
|
||||
|
||||
// 3D object
|
||||
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
|
||||
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
|
||||
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
|
||||
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect);
|
||||
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
|
||||
|
||||
drawUI(drawCmdBuffers[i]);
|
||||
|
||||
vkCmdEndRenderPass(drawCmdBuffers[i]);
|
||||
|
||||
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void loadAssets()
|
||||
{
|
||||
// Skybox
|
||||
models.skybox.loadFromFile(getAssetPath() + "models/cube.obj", vertexLayout, 0.05f, vulkanDevice, queue);
|
||||
// Objects
|
||||
std::vector<std::string> filenames = { "sphere.obj", "teapot.dae", "torusknot.obj", "venus.fbx" };
|
||||
objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" };
|
||||
for (auto file : filenames) {
|
||||
vks::Model model;
|
||||
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, 0.05f * (file == "venus.fbx" ? 3.0f : 1.0f), vulkanDevice, queue);
|
||||
models.objects.push_back(model);
|
||||
}
|
||||
// Load the cube map array from a ktx texture file
|
||||
loadCubemapArray(getAssetPath() + "textures/cubemap_array.ktx", VK_FORMAT_R8G8B8A8_UNORM, false);
|
||||
}
|
||||
|
||||
void setupDescriptorPool()
|
||||
{
|
||||
const std::vector<VkDescriptorPoolSize> poolSizes = {
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
|
||||
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
|
||||
};
|
||||
const VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
|
||||
}
|
||||
|
||||
void setupDescriptorSetLayout()
|
||||
{
|
||||
const std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
|
||||
// Binding 0 : Uniform buffer
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
|
||||
// Binding 1 : Fragment shader image sampler
|
||||
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
|
||||
};
|
||||
|
||||
const VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
|
||||
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
|
||||
|
||||
const VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
|
||||
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
|
||||
}
|
||||
|
||||
void setupDescriptorSets()
|
||||
{
|
||||
// Image descriptor for the cube map texture
|
||||
VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo(cubeMapArray.sampler, cubeMapArray.view, cubeMapArray.imageLayout);
|
||||
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
|
||||
|
||||
// 3D object descriptor set
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object));
|
||||
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
|
||||
{
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
|
||||
// Binding 1 : Fragment shader cubemap sampler
|
||||
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
|
||||
};
|
||||
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
||||
|
||||
// Sky box descriptor set
|
||||
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox));
|
||||
writeDescriptorSets =
|
||||
{
|
||||
// Binding 0 : Vertex shader uniform buffer
|
||||
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skybox.descriptor),
|
||||
// Binding 1 : Fragment shader cubemap sampler
|
||||
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureDescriptor)
|
||||
};
|
||||
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
|
||||
}
|
||||
|
||||
void preparePipelines()
|
||||
{
|
||||
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
|
||||
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
|
||||
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
|
||||
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
|
||||
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
|
||||
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
|
||||
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
|
||||
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
|
||||
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
|
||||
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
|
||||
|
||||
// Vertex bindings and attributes
|
||||
VkVertexInputBindingDescription vertexInputBinding =
|
||||
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX);
|
||||
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
|
||||
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
|
||||
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
|
||||
};
|
||||
|
||||
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
|
||||
vertexInputState.vertexBindingDescriptionCount = 1;
|
||||
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
|
||||
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
|
||||
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
|
||||
|
||||
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
|
||||
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
|
||||
pipelineCreateInfo.pRasterizationState = &rasterizationState;
|
||||
pipelineCreateInfo.pColorBlendState = &colorBlendState;
|
||||
pipelineCreateInfo.pMultisampleState = &multisampleState;
|
||||
pipelineCreateInfo.pViewportState = &viewportState;
|
||||
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
|
||||
pipelineCreateInfo.pDynamicState = &dynamicState;
|
||||
pipelineCreateInfo.stageCount = shaderStages.size();
|
||||
pipelineCreateInfo.pStages = shaderStages.data();
|
||||
pipelineCreateInfo.pVertexInputState = &vertexInputState;
|
||||
|
||||
// Skybox pipeline (background cube)
|
||||
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox));
|
||||
|
||||
// Cube map reflect pipeline
|
||||
shaderStages[0] = loadShader(getShadersPath() + "texturecubemaparray/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
|
||||
shaderStages[1] = loadShader(getShadersPath() + "texturecubemaparray/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
|
||||
// Enable depth test and write
|
||||
depthStencilState.depthWriteEnable = VK_TRUE;
|
||||
depthStencilState.depthTestEnable = VK_TRUE;
|
||||
// Flip cull mode
|
||||
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
|
||||
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.reflect));
|
||||
}
|
||||
|
||||
void prepareUniformBuffers()
|
||||
{
|
||||
// Object vertex shader uniform buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&uniformBuffers.object,
|
||||
sizeof(ShaderData)));
|
||||
|
||||
// Skybox vertex shader uniform buffer
|
||||
VK_CHECK_RESULT(vulkanDevice->createBuffer(
|
||||
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
|
||||
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
||||
&uniformBuffers.skybox,
|
||||
sizeof(ShaderData)));
|
||||
|
||||
// Map persistent
|
||||
VK_CHECK_RESULT(uniformBuffers.object.map());
|
||||
VK_CHECK_RESULT(uniformBuffers.skybox.map());
|
||||
|
||||
updateUniformBuffers();
|
||||
}
|
||||
|
||||
void updateUniformBuffers()
|
||||
{
|
||||
// 3D object
|
||||
shaderData.projection = camera.matrices.perspective;
|
||||
shaderData.modelView = camera.matrices.view;
|
||||
shaderData.inverseModelview = glm::inverse(camera.matrices.view);
|
||||
memcpy(uniformBuffers.object.mapped, &shaderData, sizeof(ShaderData));
|
||||
|
||||
// Skybox
|
||||
shaderData.modelView = camera.matrices.view;
|
||||
// Cancel out translation
|
||||
shaderData.modelView[3] = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f);
|
||||
memcpy(uniformBuffers.skybox.mapped, &shaderData, sizeof(ShaderData));
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
VulkanExampleBase::prepareFrame();
|
||||
submitInfo.commandBufferCount = 1;
|
||||
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
|
||||
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
|
||||
VulkanExampleBase::submitFrame();
|
||||
}
|
||||
|
||||
void prepare()
|
||||
{
|
||||
VulkanExampleBase::prepare();
|
||||
loadAssets();
|
||||
prepareUniformBuffers();
|
||||
setupDescriptorSetLayout();
|
||||
preparePipelines();
|
||||
setupDescriptorPool();
|
||||
setupDescriptorSets();
|
||||
buildCommandBuffers();
|
||||
prepared = true;
|
||||
}
|
||||
|
||||
virtual void render()
|
||||
{
|
||||
if (!prepared)
|
||||
return;
|
||||
draw();
|
||||
if (camera.updated) {
|
||||
updateUniformBuffers();
|
||||
}
|
||||
}
|
||||
|
||||
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
|
||||
{
|
||||
if (overlay->header("Settings")) {
|
||||
if (overlay->sliderInt("Cube map", &shaderData.cubeMapIndex, 0, cubeMapArray.layerCount - 1)) {
|
||||
updateUniformBuffers();
|
||||
}
|
||||
if (overlay->sliderFloat("LOD bias", &shaderData.lodBias, 0.0f, (float)cubeMapArray.mipLevels)) {
|
||||
updateUniformBuffers();
|
||||
}
|
||||
if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
|
||||
buildCommandBuffers();
|
||||
}
|
||||
if (overlay->checkBox("Skybox", &displaySkybox)) {
|
||||
buildCommandBuffers();
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
VULKAN_EXAMPLE_MAIN()
|
||||
Loading…
Add table
Add a link
Reference in a new issue