Swapchain code cleanup

Use references instead of pointers
This commit is contained in:
Sascha Willems 2024-12-19 21:29:22 +01:00
parent 372cab5779
commit dcec337fa9
12 changed files with 65 additions and 85 deletions

View file

@ -111,10 +111,9 @@ void VulkanRaytracingSample::setupFrameBuffer()
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
frameBuffers.resize(swapChain.images.size());
for (uint32_t i = 0; i < frameBuffers.size(); i++) {
attachments[0] = swapChain.imageViews[i];
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}

View file

@ -208,7 +208,7 @@ void VulkanSwapChain::setContext(VkInstance instance, VkPhysicalDevice physicalD
this->device = device;
}
void VulkanSwapChain::create(uint32_t *width, uint32_t *height, bool vsync, bool fullscreen)
void VulkanSwapChain::create(uint32_t& width, uint32_t& height, bool vsync, bool fullscreen)
{
assert(physicalDevice);
assert(device);
@ -221,7 +221,24 @@ void VulkanSwapChain::create(uint32_t *width, uint32_t *height, bool vsync, bool
VkSurfaceCapabilitiesKHR surfCaps;
VK_CHECK_RESULT(vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, &surfCaps));
// Get available present modes
VkExtent2D swapchainExtent = {};
// If width (and height) equals the special value 0xFFFFFFFF, the size of the surface will be set by the swapchain
if (surfCaps.currentExtent.width == (uint32_t)-1)
{
// If the surface size is undefined, the size is set to the size of the images requested
swapchainExtent.width = width;
swapchainExtent.height = height;
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCaps.currentExtent;
width = surfCaps.currentExtent.width;
height = surfCaps.currentExtent.height;
}
// Select a present mode for the swapchain
uint32_t presentModeCount;
VK_CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &presentModeCount, NULL));
assert(presentModeCount > 0);
@ -229,26 +246,6 @@ void VulkanSwapChain::create(uint32_t *width, uint32_t *height, bool vsync, bool
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
VK_CHECK_RESULT(vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, &presentModeCount, presentModes.data()));
VkExtent2D swapchainExtent = {};
// If width (and height) equals the special value 0xFFFFFFFF, the size of the surface will be set by the swapchain
if (surfCaps.currentExtent.width == (uint32_t)-1)
{
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapchainExtent.width = *width;
swapchainExtent.height = *height;
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfCaps.currentExtent;
*width = surfCaps.currentExtent.width;
*height = surfCaps.currentExtent.height;
}
// Select a present mode for the swapchain
// The VK_PRESENT_MODE_FIFO_KHR mode must always be present as per spec
// This mode waits for the vertical blank ("v-sync")
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
@ -348,25 +345,23 @@ void VulkanSwapChain::create(uint32_t *width, uint32_t *height, bool vsync, bool
VK_CHECK_RESULT(vkCreateSwapchainKHR(device, &swapchainCI, nullptr, &swapChain));
// If an existing swap chain is re-created, destroy the old swap chain
// This also cleans up all the presentable images
if (oldSwapchain != VK_NULL_HANDLE)
{
for (uint32_t i = 0; i < imageCount; i++)
{
vkDestroyImageView(device, buffers[i].view, nullptr);
// If an existing swap chain is re-created, destroy the old swap chain and the ressources owned by the application (image views, images are owned by the swap chain)
if (oldSwapchain != VK_NULL_HANDLE) {
for (auto i = 0; i < images.size(); i++) {
vkDestroyImageView(device, imageViews[i], nullptr);
}
vkDestroySwapchainKHR(device, oldSwapchain, nullptr);
}
VK_CHECK_RESULT(vkGetSwapchainImagesKHR(device, swapChain, &imageCount, NULL));
uint32_t imageCount{ 0 };
VK_CHECK_RESULT(vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr));
// Get the swap chain images
images.resize(imageCount);
VK_CHECK_RESULT(vkGetSwapchainImagesKHR(device, swapChain, &imageCount, images.data()));
// Get the swap chain buffers containing the image and imageview
buffers.resize(imageCount);
for (uint32_t i = 0; i < imageCount; i++)
imageViews.resize(imageCount);
for (auto i = 0; i < images.size(); i++)
{
VkImageViewCreateInfo colorAttachmentView = {};
colorAttachmentView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
@ -385,20 +380,16 @@ void VulkanSwapChain::create(uint32_t *width, uint32_t *height, bool vsync, bool
colorAttachmentView.subresourceRange.layerCount = 1;
colorAttachmentView.viewType = VK_IMAGE_VIEW_TYPE_2D;
colorAttachmentView.flags = 0;
buffers[i].image = images[i];
colorAttachmentView.image = buffers[i].image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorAttachmentView, nullptr, &buffers[i].view));
colorAttachmentView.image = images[i];
VK_CHECK_RESULT(vkCreateImageView(device, &colorAttachmentView, nullptr, &imageViews[i]));
}
}
VkResult VulkanSwapChain::acquireNextImage(VkSemaphore presentCompleteSemaphore, uint32_t *imageIndex)
VkResult VulkanSwapChain::acquireNextImage(VkSemaphore presentCompleteSemaphore, uint32_t& imageIndex)
{
// By setting timeout to UINT64_MAX we will always wait until the next image has been acquired or an actual error is thrown
// With that we don't have to handle VK_NOT_READY
return vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, presentCompleteSemaphore, (VkFence)nullptr, imageIndex);
return vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, presentCompleteSemaphore, (VkFence)nullptr, &imageIndex);
}
VkResult VulkanSwapChain::queuePresent(VkQueue queue, uint32_t imageIndex, VkSemaphore waitSemaphore)
@ -421,16 +412,13 @@ VkResult VulkanSwapChain::queuePresent(VkQueue queue, uint32_t imageIndex, VkSem
void VulkanSwapChain::cleanup()
{
if (swapChain != VK_NULL_HANDLE)
{
for (uint32_t i = 0; i < imageCount; i++)
{
vkDestroyImageView(device, buffers[i].view, nullptr);
if (swapChain != VK_NULL_HANDLE) {
for (auto i = 0; i < images.size(); i++) {
vkDestroyImageView(device, imageViews[i], nullptr);
}
}
if (surface != VK_NULL_HANDLE)
{
vkDestroySwapchainKHR(device, swapChain, nullptr);
}
if (surface != VK_NULL_HANDLE) {
vkDestroySurfaceKHR(instance, surface, nullptr);
}
surface = VK_NULL_HANDLE;

View file

@ -27,11 +27,6 @@
#include <sys/utsname.h>
#endif
typedef struct _SwapChainBuffers {
VkImage image{ VK_NULL_HANDLE };
VkImageView view{ VK_NULL_HANDLE };
} SwapChainBuffer;
class VulkanSwapChain
{
private:
@ -43,9 +38,8 @@ public:
VkFormat colorFormat{};
VkColorSpaceKHR colorSpace{};
VkSwapchainKHR swapChain{ VK_NULL_HANDLE };
uint32_t imageCount;
std::vector<VkImage> images{};
std::vector<SwapChainBuffer> buffers{};
std::vector<VkImageView> imageViews{};
uint32_t queueNodeIndex{ UINT32_MAX };
#if defined(VK_USE_PLATFORM_WIN32_KHR)
@ -79,7 +73,7 @@ public:
* @param height Pointer to the height of the swapchain (may be adjusted to fit the requirements of the swapchain)
* @param vsync (Optional, default = false) Can be used to force vsync-ed rendering (by using VK_PRESENT_MODE_FIFO_KHR as presentation mode)
*/
void create(uint32_t* width, uint32_t* height, bool vsync = false, bool fullscreen = false);
void create(uint32_t& width, uint32_t& height, bool vsync = false, bool fullscreen = false);
/**
* Acquires the next image in the swap chain
*
@ -90,7 +84,7 @@ public:
*
* @return VkResult of the image acquisition
*/
VkResult acquireNextImage(VkSemaphore presentCompleteSemaphore, uint32_t* imageIndex);
VkResult acquireNextImage(VkSemaphore presentCompleteSemaphore, uint32_t& imageIndex);
/**
* Queue an image for presentation
*

View file

@ -179,7 +179,7 @@ std::string VulkanExampleBase::getWindowTitle() const
void VulkanExampleBase::createCommandBuffers()
{
// Create one command buffer for each swap chain image
drawCmdBuffers.resize(swapChain.imageCount);
drawCmdBuffers.resize(swapChain.images.size());
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast<uint32_t>(drawCmdBuffers.size()));
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, drawCmdBuffers.data()));
}
@ -751,7 +751,7 @@ void VulkanExampleBase::drawUI(const VkCommandBuffer commandBuffer)
void VulkanExampleBase::prepareFrame()
{
// Acquire the next image from the swap chain
VkResult result = swapChain.acquireNextImage(semaphores.presentComplete, &currentBuffer);
VkResult result = swapChain.acquireNextImage(semaphores.presentComplete, currentBuffer);
// Recreate the swapchain if it's no longer compatible with the surface (OUT_OF_DATE)
// SRS - If no longer optimal (VK_SUBOPTIMAL_KHR), wait until submitFrame() in case number of swapchain images will change on resize
if ((result == VK_ERROR_OUT_OF_DATE_KHR) || (result == VK_SUBOPTIMAL_KHR)) {
@ -3077,11 +3077,11 @@ void VulkanExampleBase::setupDepthStencil()
void VulkanExampleBase::setupFrameBuffer()
{
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
frameBuffers.resize(swapChain.images.size());
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
const VkImageView attachments[2] = {
swapChain.buffers[i].view,
swapChain.imageViews[i],
// Depth/Stencil attachment is the same for all frame buffers
depthStencil.view
};
@ -3290,7 +3290,7 @@ void VulkanExampleBase::createSurface()
void VulkanExampleBase::createSwapChain()
{
swapChain.create(&width, &height, settings.vsync, settings.fullscreen);
swapChain.create(width, height, settings.vsync, settings.fullscreen);
}
void VulkanExampleBase::OnUpdateUIOverlay(vks::UIOverlay *overlay) {}

View file

@ -104,7 +104,7 @@ public:
// This set of barriers prepares the color and depth images for output
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
swapChain.images[i],
0,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
@ -126,7 +126,7 @@ public:
// New structures are used to define the attachments used in dynamic rendering
VkRenderingAttachmentInfoKHR colorAttachment{};
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
colorAttachment.imageView = swapChain.buffers[i].view;
colorAttachment.imageView = swapChain.imageViews[i];
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
@ -173,7 +173,7 @@ public:
// This set of barriers prepares the color image for presentation, we don't need to care for the depth image
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
swapChain.images[i],
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,

View file

@ -210,7 +210,7 @@ public:
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
views[0] = swapChain.buffers[i].view;
views[0] = swapChain.imageViews[i];
views[1] = attachments[i].color.view;
views[2] = attachments[i].depth.view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCI, nullptr, &frameBuffers[i]));

View file

@ -333,7 +333,7 @@ public:
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[1] = swapChain.buffers[i].view;
attachments[1] = swapChain.imageViews[i];
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}

View file

@ -268,11 +268,11 @@ public:
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Transition color and depth images for drawing
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
swapChain.images[i],
0,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
@ -294,7 +294,7 @@ public:
// New structures are used to define the attachments used in dynamic rendering
VkRenderingAttachmentInfoKHR colorAttachment{};
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
colorAttachment.imageView = swapChain.buffers[i].view;
colorAttachment.imageView = swapChain.imageViews[i];
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
@ -385,7 +385,7 @@ public:
// Transition color image for presentation
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.buffers[i].image,
swapChain.images[i],
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,

View file

@ -251,7 +251,7 @@ public:
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
attachments[0] = swapChain.imageViews[i];
attachments[1] = this->attachments.position.view;
attachments[2] = this->attachments.normal.view;
attachments[3] = this->attachments.albedo.view;

View file

@ -510,7 +510,7 @@ public:
{
std::array<VkImageView, 2> attachments{};
// Color attachment is the view of the swapchain image
attachments[0] = swapChain.buffers[i].view;
attachments[0] = swapChain.imageViews[i];
// Depth/Stencil attachment is the same for all frame buffers due to how depth works with current GPUs
attachments[1] = depthStencil.view;

View file

@ -705,13 +705,13 @@ public:
VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &cmdBufInfo));
// With dynamic rendering we need to explicitly add layout transitions by using barriers, this set of barriers prepares the color and depth images for output
vks::tools::insertImageMemoryBarrier(commandBuffer, swapChain.buffers[imageIndex].image, 0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(commandBuffer, swapChain.images[imageIndex], 0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(commandBuffer, depthStencil.image, 0, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
// New structures are used to define the attachments used in dynamic rendering
// Color attachment
VkRenderingAttachmentInfo colorAttachment{ VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO };
colorAttachment.imageView = swapChain.buffers[imageIndex].view;
colorAttachment.imageView = swapChain.imageViews[imageIndex];
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
@ -755,7 +755,7 @@ public:
vkCmdEndRendering(commandBuffer);
// This barrier prepares the color image for presentation, we don't need to care for the depth image
vks::tools::insertImageMemoryBarrier(commandBuffer, swapChain.buffers[imageIndex].image, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_2_NONE, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
vks::tools::insertImageMemoryBarrier(commandBuffer, swapChain.images[imageIndex], VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_2_NONE, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer));
// Submit the command buffer to the graphics queue

View file

@ -1,7 +1,7 @@
/*
* Vulkan Example - Variable rate shading
*
* Copyright (C) 2020-2023 by Sascha Willems - www.saschawillems.de
* Copyright (C) 2020-2024 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -91,10 +91,9 @@ void VulkanExample::setupFrameBuffer()
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
frameBuffers.resize(swapChain.images.size());
for (uint32_t i = 0; i < frameBuffers.size(); i++) {
attachments[0] = swapChain.imageViews[i];
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}