Code cleanup, rework, additional code comments

This commit is contained in:
Sascha Willems 2024-01-07 20:04:18 +01:00
parent fe46cef0a7
commit dec7d2e9f8
5 changed files with 206 additions and 290 deletions

View file

@ -1,6 +1,9 @@
/*
* Vulkan Example - Compute shader cloth simulation
*
* A compute shader updates a shader storage buffer that contains particles held together by springs and also does basic
* collision detection against a sphere. This storage buffer is then used as the vertex input for the graphics part of the sample
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
@ -13,81 +16,90 @@
class VulkanExample : public VulkanExampleBase
{
public:
uint32_t sceneSetup = 0;
uint32_t readSet = 0;
uint32_t indexCount;
bool simulateWind = false;
bool specializedComputeQueue = false;
uint32_t readSet{ 0 };
uint32_t indexCount{ 0 };
bool simulateWind{ false };
// This will be set to true, if the device has a dedicated queue from a compute only queue family
// With such a queue graphics and compute workloads can run in parallel, but this also requires additional barriers (often called "async compute")
// These barriers will release and acquire the resources used in graphics and compute between the different queue families
bool dedicatedComputeQueue{ false };
vks::Texture2D textureCloth;
vkglTF::Model modelSphere;
// Resources for the graphics part of the example
struct {
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
VkPipelineLayout pipelineLayout;
struct Pipelines {
VkPipeline cloth;
VkPipeline sphere;
} pipelines;
vks::Buffer indices;
vks::Buffer uniformBuffer;
struct graphicsUBO {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(-2.0f, 4.0f, -2.0f, 1.0f);
} ubo;
} graphics;
// Resources for the compute part of the example
struct {
struct StorageBuffers {
vks::Buffer input;
vks::Buffer output;
} storageBuffers;
struct Semaphores {
VkSemaphore ready{ 0L };
VkSemaphore complete{ 0L };
} semaphores;
vks::Buffer uniformBuffer;
VkQueue queue;
VkCommandPool commandPool;
std::array<VkCommandBuffer,2> commandBuffers;
VkDescriptorSetLayout descriptorSetLayout;
std::array<VkDescriptorSet,2> descriptorSets;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
struct computeUBO {
float deltaT = 0.0f;
float particleMass = 0.1f;
float springStiffness = 2000.0f;
float damping = 0.25f;
float restDistH;
float restDistV;
float restDistD;
float sphereRadius = 1.0f;
glm::vec4 spherePos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
glm::vec4 gravity = glm::vec4(0.0f, 9.8f, 0.0f, 0.0f);
glm::ivec2 particleCount;
} ubo;
} compute;
// SSBO cloth grid particle declaration
// The cloth is made from a grid of particles
struct Particle {
glm::vec4 pos;
glm::vec4 vel;
glm::vec4 uv;
glm::vec4 normal;
float pinned;
glm::vec3 _pad0;
};
// Cloth definition parameters
struct Cloth {
glm::uvec2 gridsize = glm::uvec2(60, 60);
glm::vec2 size = glm::vec2(5.0f);
glm::uvec2 gridsize{ 60, 60 };
glm::vec2 size{ 5.0f, 5.0f };
} cloth;
// We put the resource "types" into structs to make this sample easier to understand
// We use two buffers for our cloth simulation: One with the input cloth data and one for outputting updated values
// The compute pipeline will update the output buffer, and the graphics pipeline will it as a vertex buffer
struct StorageBuffers {
vks::Buffer input;
vks::Buffer output;
} storageBuffers;
// Resources for the graphics part of the example
struct Graphics {
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
struct Pipelines {
VkPipeline cloth{ VK_NULL_HANDLE };
VkPipeline sphere{ VK_NULL_HANDLE };
} pipelines;
// The vertices will be stored in the shader storage buffers, so we only need an index buffer in this structure
vks::Buffer indices;
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos{ -2.0f, 4.0f, -2.0f, 1.0f };
} uniformData;
vks::Buffer uniformBuffer;
} graphics;
// Resources for the compute part of the example
struct Compute {
struct Semaphores {
VkSemaphore ready{ VK_NULL_HANDLE };
VkSemaphore complete{ VK_NULL_HANDLE };
} semaphores;
VkQueue queue{ VK_NULL_HANDLE };
VkCommandPool commandPool{ VK_NULL_HANDLE };
std::array<VkCommandBuffer, 2> commandBuffers{};
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
std::array<VkDescriptorSet, 2> descriptorSets{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkPipeline pipeline{ VK_NULL_HANDLE };
struct UniformData {
float deltaT{ 0.0f };
// These arguments define the spring setup for the cloth piece
// Changing these changes how the cloth reacts
float particleMass{ 0.1f };
float springStiffness{ 2000.0f };
float damping{ 0.25f };
float restDistH{ 0 };
float restDistV{ 0 };
float restDistD{ 0 };
float sphereRadius{ 1.0f };
glm::vec4 spherePos{ 0.0f, 0.0f, 0.0f, 0.0f };
glm::vec4 gravity{ 0.0f, 9.8f, 0.0f, 0.0f };
glm::ivec2 particleCount{ 0 };
} uniformData;
vks::Buffer uniformBuffer;
} compute;
VulkanExample() : VulkanExampleBase()
{
title = "Compute shader cloth simulation";
@ -99,25 +111,29 @@ public:
~VulkanExample()
{
// Graphics
graphics.indices.destroy();
graphics.uniformBuffer.destroy();
vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr);
vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
textureCloth.destroy();
if (device) {
// Graphics
graphics.indices.destroy();
graphics.uniformBuffer.destroy();
vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr);
vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr);
vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr);
textureCloth.destroy();
// Compute
compute.storageBuffers.input.destroy();
compute.storageBuffers.output.destroy();
compute.uniformBuffer.destroy();
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroySemaphore(device, compute.semaphores.ready, nullptr);
vkDestroySemaphore(device, compute.semaphores.complete, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
// Compute
compute.uniformBuffer.destroy();
vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyPipeline(device, compute.pipeline, nullptr);
vkDestroySemaphore(device, compute.semaphores.ready, nullptr);
vkDestroySemaphore(device, compute.semaphores.complete, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr);
// SSBOs
storageBuffers.input.destroy();
storageBuffers.output.destroy();
}
}
// Enable physical device features required for this example
@ -137,7 +153,7 @@ public:
void addGraphicsToComputeBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
{
if (specializedComputeQueue) {
if (dedicatedComputeQueue) {
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = srcAccessMask;
bufferBarrier.dstAccessMask = dstAccessMask;
@ -146,9 +162,9 @@ public:
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = compute.storageBuffers.input.buffer;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = compute.storageBuffers.output.buffer;
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(commandBuffer,
srcStageMask,
@ -169,9 +185,9 @@ public:
bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = compute.storageBuffers.input.buffer;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = compute.storageBuffers.output.buffer;
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(
commandBuffer,
@ -185,7 +201,7 @@ public:
void addComputeToGraphicsBarriers(VkCommandBuffer commandBuffer, VkAccessFlags srcAccessMask, VkAccessFlags dstAccessMask, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask)
{
if (specializedComputeQueue) {
if (dedicatedComputeQueue) {
VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier();
bufferBarrier.srcAccessMask = srcAccessMask;
bufferBarrier.dstAccessMask = dstAccessMask;
@ -193,9 +209,9 @@ public:
bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics;
bufferBarrier.size = VK_WHOLE_SIZE;
std::vector<VkBufferMemoryBarrier> bufferBarriers;
bufferBarrier.buffer = compute.storageBuffers.input.buffer;
bufferBarrier.buffer = storageBuffers.input.buffer;
bufferBarriers.push_back(bufferBarrier);
bufferBarrier.buffer = compute.storageBuffers.output.buffer;
bufferBarrier.buffer = storageBuffers.output.buffer;
bufferBarriers.push_back(bufferBarrier);
vkCmdPipelineBarrier(
commandBuffer,
@ -248,17 +264,15 @@ public:
VkDeviceSize offsets[1] = { 0 };
// Render sphere
if (sceneSetup == 0) {
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
modelSphere.draw(drawCmdBuffers[i]);
}
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
modelSphere.draw(drawCmdBuffers[i]);
// Render cloth
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.cloth);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL);
vkCmdBindIndexBuffer(drawCmdBuffers[i], graphics.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &compute.storageBuffers.output.buffer, offsets);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffers.output.buffer, offsets);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
drawUI(drawCmdBuffers[i]);
@ -273,7 +287,6 @@ public:
}
// todo: check barriers (validation, separate compute queue)
void buildComputeCommandBuffer()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
@ -317,46 +330,24 @@ public:
}
}
// Setup and fill the compute shader storage buffers containing the particles
// Setup and fill the shader storage buffers containing the particles
// These buffers are used as shader storage buffers in the compute shader (to update them) and as vertex input in the vertex shader (to display them)
void prepareStorageBuffers()
{
std::vector<Particle> particleBuffer(cloth.gridsize.x * cloth.gridsize.y);
std::vector<Particle> particleBuffer(cloth.gridsize.x * cloth.gridsize.y);
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
float du = 1.0f / (cloth.gridsize.x - 1);
float dv = 1.0f / (cloth.gridsize.y - 1);
switch (sceneSetup) {
case 0 :
{
// Horz. cloth falls onto sphere
glm::mat4 transM = glm::translate(glm::mat4(1.0f), glm::vec3(- cloth.size.x / 2.0f, -2.0f, - cloth.size.y / 2.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f);
}
}
break;
}
case 1:
{
// Vert. Pinned cloth
glm::mat4 transM = glm::translate(glm::mat4(1.0f), glm::vec3(- cloth.size.x / 2.0f, - cloth.size.y / 2.0f, 0.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, dy * i, 0.0f, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(du * j, dv * i, 0.0f, 0.0f);
// Pin some particles
particleBuffer[i + j * cloth.gridsize.y].pinned = (i == 0) && ((j == 0) || (j == cloth.gridsize.x / 3) || (j == cloth.gridsize.x - cloth.gridsize.x / 3) || (j == cloth.gridsize.x - 1));
// Remove sphere
compute.ubo.spherePos.z = -10.0f;
}
}
break;
// Set up a flat cloth that falls onto sphere
glm::mat4 transM = glm::translate(glm::mat4(1.0f), glm::vec3(-cloth.size.x / 2.0f, -2.0f, -cloth.size.y / 2.0f));
for (uint32_t i = 0; i < cloth.gridsize.y; i++) {
for (uint32_t j = 0; j < cloth.gridsize.x; j++) {
particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f);
particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f);
particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f);
}
}
@ -374,23 +365,24 @@ public:
storageBufferSize,
particleBuffer.data());
// SSBOs will be used both as storage buffers (compute) and vertex buffers (graphics)
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.input,
&storageBuffers.input,
storageBufferSize);
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.output,
&storageBuffers.output,
storageBufferSize);
// Copy from staging buffer
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.output.buffer, 1, &copyRegion);
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffers.output.buffer, 1, &copyRegion);
// Add an initial release barrier to the graphics queue,
// so that when the compute command buffer executes for the first time
// it doesn't complain about a lack of a corresponding "release" to its "acquire"
@ -401,10 +393,10 @@ public:
// Indices
std::vector<uint32_t> indices;
for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) {
for (uint32_t x = 0; x < cloth.gridsize.x; x++) {
indices.push_back((y + 1) * cloth.gridsize.x + x);
indices.push_back((y)* cloth.gridsize.x + x);
for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) {
for (uint32_t x = 0; x < cloth.gridsize.x; x++) {
indices.push_back((y + 1) * cloth.gridsize.x + x);
indices.push_back((y)*cloth.gridsize.x + x);
}
// Primitive restart (signaled by special value 0xFFFFFFFF)
indices.push_back(0xFFFFFFFF);
@ -435,93 +427,67 @@ public:
stagingBuffer.destroy();
}
void setupDescriptorPool()
// Prepare the resources used for the graphics part of the sample
void prepareGraphics()
{
// Uniform buffer for passing data to the vertex shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(Graphics::UniformData));
VK_CHECK_RESULT(graphics.uniformBuffer.map());
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupLayoutsAndDescriptors()
{
// Set layout
// Descriptor layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
// Decscriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &graphics.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureCloth.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE);
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout));
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables, 0);
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Rendering pipeline
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "computecloth/cloth.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecloth/cloth.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass);
// Input attributes
// Binding description
// Vertex Input
std::vector<VkVertexInputBindingDescription> inputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX)
};
// Attribute descriptions
// Attribute descriptions based on the particles of the cloth
std::vector<VkVertexInputAttributeDescription> inputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, pos)),
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, uv)),
@ -557,13 +523,29 @@ public:
shaderStages[0] = loadShader(getShadersPath() + "computecloth/sphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "computecloth/sphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.sphere));
buildCommandBuffers();
}
// Prepare the resources used for the compute part of the sample
void prepareCompute()
{
// Create a compute capable device queue
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
// Uniform buffer for passing data to the compute shader
vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData));
VK_CHECK_RESULT(compute.uniformBuffer.map());
// Set some initial values
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
compute.uniformData.restDistH = dx;
compute.uniformData.restDistV = dy;
compute.uniformData.restDistD = sqrtf(dx * dx + dy * dy);
compute.uniformData.particleCount = cloth.gridsize;
// Create compute pipeline
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0),
@ -571,36 +553,30 @@ public:
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1);
// Push constants used to pass some parameters
VkPushConstantRange pushConstantRange =
vks::initializers::pushConstantRange(VK_SHADER_STAGE_COMPUTE_BIT, sizeof(uint32_t), 0);
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_COMPUTE_BIT, sizeof(uint32_t), 0);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout));
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1);
// Create two descriptor sets with input and output buffers switched
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[0]));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[1]));
std::vector<VkWriteDescriptorSet> computeWriteDescriptorSets = {
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &compute.storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &compute.storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffers.output.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &storageBuffers.input.descriptor),
vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor)
};
@ -619,9 +595,7 @@ public:
VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool));
// Create a command buffer for compute operations
VkCommandBufferAllocateInfo cmdBufAllocateInfo =
vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2);
VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2);
VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0]));
// Semaphores for graphics / compute synchronization
@ -633,80 +607,50 @@ public:
buildComputeCommandBuffer();
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Compute shader uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&compute.uniformBuffer,
sizeof(compute.ubo));
VK_CHECK_RESULT(compute.uniformBuffer.map());
// Initial values
float dx = cloth.size.x / (cloth.gridsize.x - 1);
float dy = cloth.size.y / (cloth.gridsize.y - 1);
compute.ubo.restDistH = dx;
compute.ubo.restDistV = dy;
compute.ubo.restDistD = sqrtf(dx * dx + dy * dy);
compute.ubo.particleCount = cloth.gridsize;
updateComputeUBO();
// Vertex shader uniform buffer block
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&graphics.uniformBuffer,
sizeof(graphics.ubo));
VK_CHECK_RESULT(graphics.uniformBuffer.map());
updateGraphicsUBO();
}
void updateComputeUBO()
{
if (!paused) {
// SRS - Clamp frameTimer to max 20ms refresh period (e.g. if blocked on resize), otherwise image breakup can occur
compute.ubo.deltaT = fmin(frameTimer, 0.02f) * 0.0025f;
compute.uniformData.deltaT = fmin(frameTimer, 0.02f) * 0.0025f;
if (simulateWind) {
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> rd(1.0f, 12.0f);
compute.ubo.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
compute.ubo.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
compute.uniformData.gravity.x = cos(glm::radians(-timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
compute.uniformData.gravity.z = sin(glm::radians(timer * 360.0f)) * (rd(rndEngine) - rd(rndEngine));
}
else {
compute.ubo.gravity.x = 0.0f;
compute.ubo.gravity.z = 0.0f;
compute.uniformData.gravity.x = 0.0f;
compute.uniformData.gravity.z = 0.0f;
}
}
else {
compute.ubo.deltaT = 0.0f;
compute.uniformData.deltaT = 0.0f;
}
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData));
}
void updateGraphicsUBO()
{
graphics.ubo.projection = camera.matrices.perspective;
graphics.ubo.view = camera.matrices.view;
memcpy(graphics.uniformBuffer.mapped, &graphics.ubo, sizeof(graphics.ubo));
graphics.uniformData.projection = camera.matrices.perspective;
graphics.uniformData.view = camera.matrices.view;
memcpy(graphics.uniformBuffer.mapped, &graphics.uniformData, sizeof(Graphics::UniformData));
}
void draw()
{
// As we use both graphics and compute, frame submission is a bit more involved
// We'll be using semaphores to synchronize between the compute shader updating the cloth and the graphics pipeline drawing it
static bool firstDraw = true;
VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo();
// FIXME find a better way to do this (without using fences, which is much slower)
VkPipelineStageFlags computeWaitDstStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT;
if (!firstDraw) {
computeSubmitInfo.waitSemaphoreCount = 1;
computeSubmitInfo.pWaitSemaphores = &compute.semaphores.ready;
computeSubmitInfo.pWaitDstStageMask = &computeWaitDstStageMask;
} else {
}
else {
firstDraw = false;
}
computeSubmitInfo.signalSemaphoreCount = 1;
@ -714,7 +658,7 @@ public:
computeSubmitInfo.commandBufferCount = 1;
computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[readSet];
VK_CHECK_RESULT( vkQueueSubmit( compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE) );
VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE));
// Submit graphics commands
VulkanExampleBase::prepareFrame();
@ -745,19 +689,16 @@ public:
{
VulkanExampleBase::prepare();
// Make sure the code works properly both with different queues families for graphics and compute and the same queue family
// You can use DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE preprocessor define to force graphics and compute from the same queue family
#ifdef DEBUG_FORCE_SHARED_GRAPHICS_COMPUTE_QUEUE
vulkanDevice->queueFamilyIndices.compute = vulkanDevice->queueFamilyIndices.graphics;
#endif
// Check whether the compute queue family is distinct from the graphics queue family
specializedComputeQueue = vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute;
dedicatedComputeQueue = vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute;
loadAssets();
prepareStorageBuffers();
prepareUniformBuffers();
setupDescriptorPool();
setupLayoutsAndDescriptors();
preparePipelines();
prepareGraphics();
prepareCompute();
buildCommandBuffers();
prepared = true;
}
@ -765,17 +706,12 @@ public:
{
if (!prepared)
return;
draw();
updateComputeUBO();
}
virtual void viewChanged()
{
updateGraphicsUBO();
updateComputeUBO();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Simulate wind", &simulateWind);

View file

@ -5,7 +5,6 @@ struct Particle {
vec4 vel;
vec4 uv;
vec4 normal;
float pinned;
};
layout(std430, binding = 0) buffer ParticleIn {
@ -53,13 +52,6 @@ void main()
if (index > params.particleCount.x * params.particleCount.y)
return;
// Pinned?
if (particleIn[index].pinned == 1.0) {
particleOut[index].pos = particleOut[index].pos;
particleOut[index].vel = vec4(0.0);
return;
}
// Initial force from gravity
vec3 force = params.gravity.xyz * params.particleMass;

View file

@ -17,11 +17,6 @@ layout (binding = 0) uniform UBO
vec4 lightPos;
} ubo;
out gl_PerVertex
{
vec4 gl_Position;
};
void main ()
{
outUV = inUV;

View file

@ -1,11 +1,11 @@
// Copyright 2020 Google LLC
// Copyright 2023 Sascha Willems
struct Particle {
float4 pos;
float4 vel;
float4 uv;
float4 normal;
float pinned;
};
[[vk::binding(0)]]
@ -54,13 +54,6 @@ void main(uint3 id : SV_DispatchThreadID)
if (index > params.particleCount.x * params.particleCount.y)
return;
// Pinned?
if (particleIn[index].pinned == 1.0) {
particleOut[index].pos = particleOut[index].pos;
particleOut[index].vel = float4(0, 0, 0, 0);
return;
}
// Initial force from gravity
float3 force = params.gravity.xyz * params.particleMass;