Started work on inline uniform block example (VK_EXT_inline_uniform_block)

This commit is contained in:
saschawillems 2018-09-13 22:46:17 +02:00
parent 20cf1707fc
commit dff35dd336
6 changed files with 497 additions and 0 deletions

View file

@ -0,0 +1,23 @@
#version 450
layout (set = 0, binding = 2) uniform sampler2D samplerColorMap;
layout (location = 0) in vec3 inNormal;
layout (location = 1) in vec3 inColor;
layout (location = 2) in vec2 inUV;
layout (location = 3) in vec3 inViewVec;
layout (location = 4) in vec3 inLightVec;
layout (location = 0) out vec4 outFragColor;
void main()
{
vec3 color = texture(samplerColorMap, inUV).rgb * inColor;
vec3 N = normalize(inNormal);
vec3 L = normalize(inLightVec);
vec3 V = normalize(inViewVec);
vec3 R = reflect(-L, N);
float diffuse = max(dot(N, L), 0.1);
outFragColor = vec4(color * diffuse, 1.0);
}

Binary file not shown.

View file

@ -0,0 +1,40 @@
#version 450
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec2 inUV;
layout (location = 3) in vec3 inColor;
layout (set = 0, binding = 0) uniform UBOMatrices {
mat4 projection;
mat4 view;
mat4 model;
} uboMatrices;
layout (set = 0, binding = 1) uniform UniformInline {
vec4 color;
} uniformInline;
layout (location = 0) out vec3 outNormal;
layout (location = 1) out vec3 outColor;
layout (location = 2) out vec2 outUV;
layout (location = 3) out vec3 outViewVec;
layout (location = 4) out vec3 outLightVec;
out gl_PerVertex {
vec4 gl_Position;
};
void main()
{
outColor = inColor * uniformInline.color.rgb;
outUV = inUV;
gl_Position = uboMatrices.projection * uboMatrices.view * uboMatrices.model * vec4(inPos.xyz, 1.0);
vec4 pos = uboMatrices.model * vec4(inPos, 1.0);
outNormal = mat3(transpose(inverse(uboMatrices.model))) * normalize(inNormal);
vec3 lightPos = vec3(0.0f, -25.0f, 25.0f);
vec3 lPos = mat3(uboMatrices.model) * lightPos.xyz;
outLightVec = lPos - pos.xyz;
outViewVec = -pos.xyz;
}

Binary file not shown.

View file

@ -62,6 +62,7 @@ set(EXAMPLES
hdr
imgui
indirectdraw
inlineuniformblocks
inputattachments
instancing
mesh

View file

@ -0,0 +1,433 @@
/*
* Vulkan Example - Using inline uniform blocks for passing data to shader stages
* Note: Requires a device that supports the VK_EXT_inline_uniform_block extension
*
* Relevant code parts are marked with [POI]
*
* Copyright (C) 2018 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define ENABLE_VALIDATION false
class VulkanExample : public VulkanExampleBase
{
public:
bool animate = true;
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
});
/*
[POI] This is the data structure that'll be passed using inline uniform blocks
*/
struct InlineBlockData {
glm::vec4 color;
};
struct Cube {
struct Matrices {
glm::mat4 projection;
glm::mat4 view;
glm::mat4 model;
} matrices;
InlineBlockData inlineBlockData;
VkDescriptorSet descriptorSet;
vks::Texture2D texture;
vks::Buffer uniformBuffer;
glm::vec3 rotation;
};
std::array<Cube, 2> cubes;
struct Models {
vks::Model cube;
} models;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Inline uniform blocks";
settings.overlay = true;
camera.type = Camera::CameraType::lookat;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f));
/*
[POI] Enable extension required for conditional rendering
*/
enabledDeviceExtensions.push_back(VK_EXT_INLINE_UNIFORM_BLOCK_EXTENSION_NAME);
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
models.cube.destroy();
for (auto cube : cubes) {
cube.uniformBuffer.destroy();
cube.texture.destroy();
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) {
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.cube.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.cube.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
for (auto cube : cubes) {
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cube.descriptorSet, 0, nullptr);
vkCmdDrawIndexed(drawCmdBuffers[i], models.cube.indexCount, 1, 0, 0, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
models.cube.loadFromFile(getAssetPath() + "models/cube.dae", vertexLayout, 1.0f, vulkanDevice, queue);
cubes[0].texture.loadFromFile(getAssetPath() + "textures/crate01_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[1].texture.loadFromFile(getAssetPath() + "textures/crate02_color_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
cubes[0].inlineBlockData.color = glm::vec4(1.0f, 0.0f, 0.0f, 1.0f);
cubes[1].inlineBlockData.color = glm::vec4(0.0f, 0.0f, 1.0f, 1.0f);
}
/*
[POI] Set up descriptor sets and set layout
*/
void setupDescriptors()
{
const uint32_t cubeCount = static_cast<uint32_t>(cubes.size());
/*
Descriptor pool
*/
std::array<VkDescriptorPoolSize, 3> descriptorPoolSizes{};
// One uniform buffer descriptor per cube
descriptorPoolSizes[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorPoolSizes[0].descriptorCount = cubeCount;
/*
[POI] One inline uniform block descriptor per cube
*/
descriptorPoolSizes[1].type = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
// Descriptor count for inline uniform blocks contains the combined data sizes of all inline uniform blocks used from this pool
descriptorPoolSizes[1].descriptorCount = cubeCount * sizeof(InlineBlockData);
// One combined image samples per cube
descriptorPoolSizes[2].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorPoolSizes[2].descriptorCount = static_cast<uint32_t>(cubes.size());
// Create the global descriptor pool
VkDescriptorPoolCreateInfo descriptorPoolCI = {};
descriptorPoolCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolCI.poolSizeCount = static_cast<uint32_t>(descriptorPoolSizes.size());
descriptorPoolCI.pPoolSizes = descriptorPoolSizes.data();
descriptorPoolCI.maxSets = static_cast<uint32_t>(descriptorPoolSizes.size());
#
/*
[POI] New structure that has to be chained into the descriptor pool create info if you want to allocate inline uniform blocks
*/
VkDescriptorPoolInlineUniformBlockCreateInfoEXT descriptorPoolInlineUniformBlockCreateInfo{};
descriptorPoolInlineUniformBlockCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT;
descriptorPoolInlineUniformBlockCreateInfo.maxInlineUniformBlockBindings = 1;
// Chain into descriptor pool create info
descriptorPoolCI.pNext = &descriptorPoolInlineUniformBlockCreateInfo;
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorPool));
/*
Descriptor set layout
*/
std::array<VkDescriptorSetLayoutBinding,3> setLayoutBindings{};
// Binding 0: Uniform buffers (used to pass matrices)
setLayoutBindings[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
setLayoutBindings[0].binding = 0;
setLayoutBindings[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
setLayoutBindings[0].descriptorCount = 1;
/*
[POI] Binding 1: Inline uniform block
*/
setLayoutBindings[1].descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
setLayoutBindings[1].binding = 1;
setLayoutBindings[1].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
// Descriptor count for an inline uniform block contains data sizes of the block
setLayoutBindings[1].descriptorCount = sizeof(InlineBlockData);
// Binding 2: Combined image sampler (used to pass per object texture information)
setLayoutBindings[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
setLayoutBindings[2].binding = 2;
setLayoutBindings[2].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
setLayoutBindings[2].descriptorCount = 1;
// Create the descriptor set layout
VkDescriptorSetLayoutCreateInfo descriptorLayoutCI{};
descriptorLayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayoutCI.bindingCount = static_cast<uint32_t>(setLayoutBindings.size());
descriptorLayoutCI.pBindings = setLayoutBindings.data();
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutCI, nullptr, &descriptorSetLayout));
/*
Descriptor sets
*/
for (auto &cube: cubes) {
// Allocates an empty descriptor set without actual descriptors from the pool using the set layout
VkDescriptorSetAllocateInfo allocateInfo{};
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocateInfo.descriptorPool = descriptorPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &cube.descriptorSet));
// Update the descriptor set with the actual descriptors matching shader bindings set in the layout
std::array<VkWriteDescriptorSet, 3> writeDescriptorSets{};
// Binding 0: Object matrices Uniform buffer
writeDescriptorSets[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[0].dstSet = cube.descriptorSet;
writeDescriptorSets[0].dstBinding = 0;
writeDescriptorSets[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSets[0].pBufferInfo = &cube.uniformBuffer.descriptor;
writeDescriptorSets[0].descriptorCount = 1;
/*
[POI] Binding 1: Inline uniform block
*/
writeDescriptorSets[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[1].dstSet = cube.descriptorSet;
writeDescriptorSets[1].dstBinding = 1;
writeDescriptorSets[1].descriptorType = VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT;
// The dstArrayElement member can be used to define an offset for inline uniform blocks
writeDescriptorSets[1].dstArrayElement = 0;
// TODO: API-Design from hell
writeDescriptorSets[1].descriptorCount = sizeof(glm::vec4);
/*
[POI] New structure that defines size and data of the inline uniform block
*/
VkWriteDescriptorSetInlineUniformBlockEXT writeDescriptorSetInlineUniformBlock{};
writeDescriptorSetInlineUniformBlock.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT;
writeDescriptorSetInlineUniformBlock.dataSize = sizeof(InlineBlockData);
writeDescriptorSetInlineUniformBlock.pData = &cube.inlineBlockData;
// Needs to be chained to an existing write descriptor set structure
writeDescriptorSets[1].pNext = &writeDescriptorSetInlineUniformBlock;
// Binding 2: Object texture
writeDescriptorSets[2].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSets[2].dstSet = cube.descriptorSet;
writeDescriptorSets[2].dstBinding = 2;
writeDescriptorSets[2].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writeDescriptorSets[2].pImageInfo = &cube.texture.descriptor;
writeDescriptorSets[2].descriptorCount = 1;
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
}
void preparePipelines()
{
VkPipelineLayoutCreateInfo pipelineLayoutCI{};
pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutCI.setLayoutCount = 1;
pipelineLayoutCI.pSetLayouts = &descriptorSetLayout;
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()),0);
// Vertex bindings and attributes
const std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX),
};
const std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: UV
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfoCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfoCI.pVertexInputState = &vertexInputState;
pipelineCreateInfoCI.pInputAssemblyState = &inputAssemblyStateCI;
pipelineCreateInfoCI.pRasterizationState = &rasterizationStateCI;
pipelineCreateInfoCI.pColorBlendState = &colorBlendStateCI;
pipelineCreateInfoCI.pMultisampleState = &multisampleStateCI;
pipelineCreateInfoCI.pViewportState = &viewportStateCI;
pipelineCreateInfoCI.pDepthStencilState = &depthStencilStateCI;
pipelineCreateInfoCI.pDynamicState = &dynamicStateCI;
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {
loadShader(getAssetPath() + "shaders/inlineuniformblocks/cube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT),
loadShader(getAssetPath() + "shaders/inlineuniformblocks/cube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)
};
pipelineCreateInfoCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfoCI.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfoCI, nullptr, &pipeline));
}
void prepareUniformBuffers()
{
// Vertex shader matrix uniform buffer block
for (auto& cube : cubes) {
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&cube.uniformBuffer,
sizeof(Cube::Matrices)));
VK_CHECK_RESULT(cube.uniformBuffer.map());
}
updateUniformBuffers();
}
void updateUniformBuffers()
{
cubes[0].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3(-2.0f, 0.0f, 0.0f));
cubes[1].matrices.model = glm::translate(glm::mat4(1.0f), glm::vec3( 1.5f, 0.5f, 0.0f));
for (auto& cube : cubes) {
cube.matrices.projection = camera.matrices.perspective;
cube.matrices.view = camera.matrices.view;
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
cube.matrices.model = glm::rotate(cube.matrices.model, glm::radians(cube.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
memcpy(cube.uniformBuffer.mapped, &cube.matrices, sizeof(cube.matrices));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (animate) {
cubes[0].rotation.x += 2.5f * frameTimer;
if (cubes[0].rotation.x > 360.0f)
cubes[0].rotation.x -= 360.0f;
cubes[1].rotation.y += 2.0f * frameTimer;
if (cubes[1].rotation.x > 360.0f)
cubes[1].rotation.x -= 360.0f;
}
if ((camera.updated) || (animate)) {
updateUniformBuffers();
}
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
overlay->checkBox("Animate", &animate);
}
}
};
VULKAN_EXAMPLE_MAIN()