Updated compute raytrace example. Pass scene primitives via SSBOs, shader tweaks, etc.

This commit is contained in:
saschawillems 2016-09-01 22:55:57 +02:00
parent 5862dc0479
commit eaf76fd6e7
6 changed files with 310 additions and 133 deletions

View file

@ -89,6 +89,11 @@
<ClInclude Include="..\base\vulkanexamplebase.h" /> <ClInclude Include="..\base\vulkanexamplebase.h" />
<ClInclude Include="..\base\vulkantools.h" /> <ClInclude Include="..\base\vulkantools.h" />
</ItemGroup> </ItemGroup>
<ItemGroup>
<None Include="..\data\shaders\computeparticles\particle.comp" />
<None Include="..\data\shaders\computeparticles\particle.frag" />
<None Include="..\data\shaders\computeparticles\particle.vert" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets"> <ImportGroup Label="ExtensionTargets">
</ImportGroup> </ImportGroup>

View file

@ -13,6 +13,9 @@
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier> <UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav</Extensions> <Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav</Extensions>
</Filter> </Filter>
<Filter Include="Shaders">
<UniqueIdentifier>{e28680da-cc95-413d-b6f0-0e1f9967ee88}</UniqueIdentifier>
</Filter>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="..\base\vulkandebug.cpp"> <ClCompile Include="..\base\vulkandebug.cpp">
@ -39,4 +42,15 @@
<Filter>Header Files</Filter> <Filter>Header Files</Filter>
</ClInclude> </ClInclude>
</ItemGroup> </ItemGroup>
<ItemGroup>
<None Include="..\data\shaders\computeparticles\particle.comp">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\computeparticles\particle.frag">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\computeparticles\particle.vert">
<Filter>Shaders</Filter>
</None>
</ItemGroup>
</Project> </Project>

View file

@ -13,6 +13,9 @@
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier> <UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav</Extensions> <Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav</Extensions>
</Filter> </Filter>
<Filter Include="Shaders">
<UniqueIdentifier>{232f5393-2624-4cd4-84ed-9fdda34ff64c}</UniqueIdentifier>
</Filter>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="..\base\vulkandebug.cpp"> <ClCompile Include="..\base\vulkandebug.cpp">

View file

@ -10,13 +10,13 @@ layout (binding = 0, rgba8) uniform writeonly image2D resultImage;
#define EPSILON 0.0001 #define EPSILON 0.0001
#define MAXLEN 1000.0 #define MAXLEN 1000.0
#define PLANEID 1
#define SPHERECOUNT 3
#define SHADOW 0.5 #define SHADOW 0.5
#define RAYBOUNCES 1 #define RAYBOUNCES 2
#define REFLECTIONSTRENGTH 0.4 #define REFLECTIONSTRENGTH 0.4
#define REFLECTIONFALLOFF 0.5
struct Camera { struct Camera
{
vec3 pos; vec3 pos;
vec3 lookat; vec3 lookat;
float fov; float fov;
@ -31,50 +31,60 @@ layout (binding = 1) uniform UBO
mat4 rotMat; mat4 rotMat;
} ubo; } ubo;
struct Sphere
{
vec3 pos;
float radius;
vec3 diffuse;
float specular;
int id;
};
struct Plane
{
vec3 normal;
float distance;
vec3 diffuse;
float specular;
int id;
};
layout (std140, binding = 2) buffer Spheres
{
Sphere spheres[ ];
};
layout (std140, binding = 3) buffer Planes
{
Plane planes[ ];
};
void reflectRay(inout vec3 rayD, in vec3 mormal) void reflectRay(inout vec3 rayD, in vec3 mormal)
{ {
rayD = rayD + 2.0 * -dot(mormal, rayD) * mormal; rayD = rayD + 2.0 * -dot(mormal, rayD) * mormal;
} }
// Lighting calculations // Lighting =========================================================
float lightDiffuse(vec3 normal, vec3 lightDir) float lightDiffuse(vec3 normal, vec3 lightDir)
{ {
return clamp(dot(normal, lightDir), 0.0, 1.0); return clamp(dot(normal, lightDir), 0.25, 1.0);
} }
float lightSpecular(vec3 normal, vec3 lightDir) float lightSpecular(vec3 normal, vec3 lightDir, float specularFactor)
{ {
vec3 viewVec = normalize(ubo.camera.pos); vec3 viewVec = normalize(ubo.camera.pos);
vec3 halfVec = normalize(lightDir + viewVec); vec3 halfVec = normalize(lightDir + viewVec);
return pow(clamp(dot(normal, halfVec), 0.0, 1.0), 32.0); return pow(clamp(dot(normal, halfVec), 0.0, 1.0), specularFactor);
} }
// Primitives // Sphere ===========================================================
// Basic material description
struct Material
{
vec3 diffuse;
vec3 specular;
};
// Sphere
struct Sphere
{
int id;
vec3 pos;
float r;
Material material;
} sphere;
Sphere spheres[SPHERECOUNT];
float sphereIntersect(in vec3 rayO, in vec3 rayD, in Sphere sphere) float sphereIntersect(in vec3 rayO, in vec3 rayD, in Sphere sphere)
{ {
vec3 oc = rayO - sphere.pos; vec3 oc = rayO - sphere.pos;
float b = 2.0 * dot(oc, rayD); float b = 2.0 * dot(oc, rayD);
float c = dot(oc, oc) - sphere.r*sphere.r; float c = dot(oc, oc) - sphere.radius*sphere.radius;
float h = b*b - 4.0*c; float h = b*b - 4.0*c;
if (h < 0.0) if (h < 0.0)
{ {
@ -86,51 +96,58 @@ float sphereIntersect(in vec3 rayO, in vec3 rayD, in Sphere sphere)
vec3 sphereNormal(in vec3 pos, in Sphere sphere) vec3 sphereNormal(in vec3 pos, in Sphere sphere)
{ {
return (pos - sphere.pos) / sphere.r; return (pos - sphere.pos) / sphere.radius;
} }
// Plane // Plane ===========================================================
float planeIntersect(vec3 rayO, vec3 rayD) float planeIntersect(vec3 rayO, vec3 rayD, Plane plane)
{ {
return -rayO.y/rayD.y; float d = dot(rayD, plane.normal);
if (d == 0.0)
return 0.0;
float t = -(plane.distance + dot(rayO, plane.normal)) / d;
if (t < 0.0)
return 0.0;
return t;
} }
vec3 planeNormal(in vec3 pos)
{
return vec3(0.0, 1.0, 0.0);
}
int intersect(in vec3 rayO, in vec3 rayD, out float resT) int intersect(in vec3 rayO, in vec3 rayD, inout float resT)
{ {
int id = -1; int id = -1;
resT = MAXLEN;
for (int i = 0; i < SPHERECOUNT; i++) for (int i = 0; i < spheres.length(); i++)
{ {
float tSphere = sphereIntersect(rayO, rayD, spheres[i]); float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if (tSphere > EPSILON) if ((tSphere > EPSILON) && (tSphere < resT))
{ {
id = spheres[i].id; id = spheres[i].id;
resT = tSphere; resT = tSphere;
return id;
break;
} }
} }
float tplane = planeIntersect(rayO, rayD); for (int i = 0; i < planes.length(); i++)
{
float tplane = planeIntersect(rayO, rayD, planes[i]);
if ((tplane > EPSILON) && (tplane < resT)) if ((tplane > EPSILON) && (tplane < resT))
{ {
id = PLANEID; id = planes[i].id;
resT = tplane; resT = tplane;
} }
}
return id; return id;
} }
float calcShadow(in vec3 rayO, in vec3 rayD, in int id) float calcShadow(in vec3 rayO, in vec3 rayD, in int id)
{ {
for (int i = 0; i < SPHERECOUNT; i++) //todo: avoid backprojection
for (int i = 0; i < spheres.length(); i++)
{ {
float tSphere = sphereIntersect(rayO, rayD, spheres[i]); float tSphere = sphereIntersect(rayO, rayD, spheres[i]);
if (tSphere > EPSILON) if (tSphere > EPSILON)
@ -149,7 +166,7 @@ vec3 fog(in float t, in vec3 color)
vec3 renderScene(inout vec3 rayO, inout vec3 rayD, inout int id) vec3 renderScene(inout vec3 rayO, inout vec3 rayD, inout int id)
{ {
vec3 color = vec3(0.0); vec3 color = vec3(0.0);
float t = 0.0; float t = MAXLEN;
// Get intersected object ID // Get intersected object ID
int objectID = intersect(rayO, rayD, t); int objectID = intersect(rayO, rayD, t);
@ -163,26 +180,35 @@ vec3 renderScene(inout vec3 rayO, inout vec3 rayD, inout int id)
vec3 lightVec = normalize(ubo.lightPos - pos); vec3 lightVec = normalize(ubo.lightPos - pos);
vec3 normal; vec3 normal;
if (objectID == PLANEID) // Planes
// Spheres
for (int i = 0; i < planes.length(); i++)
{ {
normal = planeNormal(pos); if (objectID == planes[i].id)
float diffuse = clamp(dot(normal, lightVec), 0.0, 1.0); {
color = vec3(1.0, 1.0, 1.0) * diffuse; normal = planes[i].normal;
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, planes[i].specular);
color = diffuse * planes[i].diffuse + specular;
} }
else }
{
for (int i = 0; i < SPHERECOUNT; i++) for (int i = 0; i < spheres.length(); i++)
{ {
if (objectID == spheres[i].id) if (objectID == spheres[i].id)
{ {
normal = sphereNormal(pos, spheres[i]); normal = sphereNormal(pos, spheres[i]);
float diffuse = lightDiffuse(normal, lightVec); float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec); float specular = lightSpecular(normal, lightVec, spheres[i].specular);
color = diffuse * spheres[i].material.diffuse + specular * spheres[i].material.specular; color = diffuse * spheres[i].diffuse.rgb + specular;
}
} }
} }
if (id == -1)
return color;
id = objectID; id = objectID;
// Shadows // Shadows
@ -200,26 +226,6 @@ vec3 renderScene(inout vec3 rayO, inout vec3 rayD, inout int id)
void main() void main()
{ {
// Scene setup
// todo : from ubo
spheres[0].id = 2;
spheres[0].pos = vec3(-2.25, 1.0, 0.0);
spheres[0].r = 1.0;
spheres[0].material.diffuse = vec3(1.0, 0.0, 0.0);
spheres[0].material.specular = vec3(2.0);
spheres[1].id = 3;
spheres[1].pos = vec3(0.0, 2.5, 0.0);
spheres[1].r = 1.0;
spheres[1].material.diffuse = vec3(0.0, 0.0, 1.0);
spheres[1].material.specular = vec3(2.0);
spheres[2].id = 4;
spheres[2].pos = vec3(2.25, 1.0, 0.0);
spheres[2].r = 1.0;
spheres[2].material.diffuse = vec3(0.0, 1.0, 0.0);
spheres[2].material.specular = vec3(2.0);
ivec2 dim = imageSize(resultImage); ivec2 dim = imageSize(resultImage);
vec2 uv = vec2(gl_GlobalInvocationID.xy) / dim; vec2 uv = vec2(gl_GlobalInvocationID.xy) / dim;
@ -230,14 +236,16 @@ void main()
int id = 0; int id = 0;
vec3 finalColor = renderScene(rayO, rayD, id); vec3 finalColor = renderScene(rayO, rayD, id);
bool reflections = true; const bool reflections = true;
// Reflection // Reflection
if (reflections) if (reflections)
{ {
float reflectionStrength = REFLECTIONSTRENGTH;
for (int i = 0; i < RAYBOUNCES; i++) for (int i = 0; i < RAYBOUNCES; i++)
{ {
vec3 reflectionColor = renderScene(rayO, rayD, id); vec3 reflectionColor = renderScene(rayO, rayD, id);
finalColor = (1.0 - REFLECTIONSTRENGTH) * finalColor + REFLECTIONSTRENGTH * mix(reflectionColor, finalColor, 1.0 - REFLECTIONSTRENGTH); finalColor = (1.0 - reflectionStrength) * finalColor + reflectionStrength * mix(reflectionColor, finalColor, 1.0 - reflectionStrength);
reflectionStrength *= REFLECTIONFALLOFF;
} }
} }

View file

@ -45,6 +45,11 @@ public:
// Resources for the compute part of the example // Resources for the compute part of the example
struct { struct {
struct {
vk::Buffer spheres; // (Shader) storage buffer object with scene spheres
vk::Buffer planes; // (Shader) storage buffer object with scene planes
} storageBuffers;
vk::Buffer uniformBuffer; // Uniform buffer object containing scene data
VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics) VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics)
VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics) VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics)
VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers
@ -53,26 +58,43 @@ public:
VkDescriptorSet descriptorSet; // Compute shader bindings VkDescriptorSet descriptorSet; // Compute shader bindings
VkPipelineLayout pipelineLayout; // Layout of the compute pipeline VkPipelineLayout pipelineLayout; // Layout of the compute pipeline
VkPipeline pipeline; // Compute raytracing pipeline VkPipeline pipeline; // Compute raytracing pipeline
} compute; struct UBOCompute { // Compute shader uniform block object
vk::Buffer uniformDataCompute;
struct {
glm::vec3 lightPos; glm::vec3 lightPos;
float aspectRatio; // Aspect ratio of the viewport float aspectRatio; // Aspect ratio of the viewport
glm::vec4 fogColor = glm::vec4(0.0f); glm::vec4 fogColor = glm::vec4(0.0f);
struct { struct {
glm::vec3 pos = glm::vec3(0.0f, 1.5f, 4.0f); glm::vec3 pos = glm::vec3(0.0f, 0.0f, 4.0f);
glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f); glm::vec3 lookat = glm::vec3(0.0f, 0.5f, 0.0f);
float fov = 10.0f; float fov = 10.0f;
} camera; } camera;
} uboCompute; } ubo;
} compute;
// SSBO sphere declaration
struct Sphere { // Shader uses std140 layout (so we only use vec4 instead of vec3)
glm::vec3 pos;
float radius;
glm::vec3 diffuse;
float specular;
uint32_t id; // Id used to identify sphere for raytracing
glm::ivec3 _pad;
};
// SSBO plane declaration
struct Plane {
glm::vec3 normal;
float distance;
glm::vec3 diffuse;
float specular;
uint32_t id;
glm::ivec3 _pad;
};
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{ {
title = "Vulkan Example - Compute shader ray tracing"; title = "Vulkan Example - Compute shader ray tracing";
enableTextOverlay = true; enableTextOverlay = true;
uboCompute.aspectRatio = (float)width / (float)height; compute.ubo.aspectRatio = (float)width / (float)height;
paused = true; paused = true;
timerSpeed *= 0.5f; timerSpeed *= 0.5f;
} }
@ -90,7 +112,9 @@ public:
vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr); vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr);
vkDestroyFence(device, compute.fence, nullptr); vkDestroyFence(device, compute.fence, nullptr);
vkDestroyCommandPool(device, compute.commandPool, nullptr); vkDestroyCommandPool(device, compute.commandPool, nullptr);
uniformDataCompute.destroy(); compute.uniformBuffer.destroy();
compute.storageBuffers.spheres.destroy();
compute.storageBuffers.planes.destroy();
textureLoader->destroyTexture(textureComputeTarget); textureLoader->destroyTexture(textureComputeTarget);
} }
@ -259,15 +283,113 @@ public:
vkEndCommandBuffer(compute.commandBuffer); vkEndCommandBuffer(compute.commandBuffer);
} }
uint32_t currentId = 0; // Id used to identify objects by the ray tracing shader
Sphere newSphere(glm::vec3 pos, float radius, glm::vec3 diffuse, float specular)
{
Sphere sphere;
sphere.id = currentId++;
sphere.pos = pos;
sphere.radius = radius;
sphere.diffuse = diffuse;
sphere.specular = specular;
return sphere;
}
Plane newPlane(glm::vec3 normal, float distance, glm::vec3 diffuse, float specular)
{
Plane plane;
plane.id = currentId++;
plane.normal = normal;
plane.distance = distance;
plane.diffuse = diffuse;
plane.specular = specular;
return plane;
}
// Setup and fill the compute shader storage buffers containing primitives for the raytraced scene
void prepareStorageBuffers()
{
// Spheres
std::vector<Sphere> spheres;
spheres.push_back(newSphere(glm::vec3(1.75f, -0.5f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f));
spheres.push_back(newSphere(glm::vec3(0.0f, 1.0f, -0.5f), 1.0f, glm::vec3(0.65f, 0.77f, 0.97f), 32.0f));
spheres.push_back(newSphere(glm::vec3(-1.75f, -0.75f, -0.5f), 1.25f, glm::vec3(0.9f, 0.76f, 0.46f), 32.0f));
// spheres.push_back(newSphere(glm::vec3(-2.25f, -1.0f, 0.5f), 1.0f, glm::vec3(1.0f, 0.32f, 0.36f), 32.0f));
//spheres.push_back(newSphere(glm::vec3(-2.25f, 1.0f, 0.0f), 1.0f, glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(2.0f)));
//spheres.push_back(newSphere(glm::vec3(0.f, 2.5f, 0.0f), 1.0f, glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(2.0f)));
//spheres.push_back(newSphere(glm::vec3(2.25f, 1.0f, 0.0f), 1.0f, glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(2.0f)));
VkDeviceSize storageBufferSize = spheres.size() * sizeof(Sphere);
// Stage
vk::Buffer stagingBuffer;
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
spheres.data());
vulkanDevice->createBuffer(
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.spheres,
storageBufferSize);
// Copy to staging buffer
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.spheres.buffer, 1, &copyRegion);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
// Planes
std::vector<Plane> planes;
const float roomDim = 4.0f;
planes.push_back(newPlane(glm::vec3(0.0f, 1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(0.0f, -1.0f, 0.0f), roomDim, glm::vec3(1.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(0.0f, 0.0f, 1.0f), roomDim, glm::vec3(1.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(0.0f, 0.0f, -1.0f), roomDim, glm::vec3(0.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(-1.0f, 0.0f, 0.0f), roomDim, glm::vec3(1.0f, 0.0f, 0.0f), 32.0f));
planes.push_back(newPlane(glm::vec3(1.0f, 0.0f, 0.0f), roomDim, glm::vec3(0.0f, 1.0f, 0.0f), 32.0f));
storageBufferSize = planes.size() * sizeof(Plane);
// Stage
vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
storageBufferSize,
planes.data());
vulkanDevice->createBuffer(
// The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&compute.storageBuffers.planes,
storageBufferSize);
// Copy to staging buffer
copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
copyRegion.size = storageBufferSize;
vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.planes.buffer, 1, &copyRegion);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
stagingBuffer.destroy();
}
void setupDescriptorPool() void setupDescriptorPool()
{ {
std::vector<VkDescriptorPoolSize> poolSizes = std::vector<VkDescriptorPoolSize> poolSizes =
{ {
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), // Compute UBO
// Graphics pipeline uses image samplers for display vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Graphics image samplers
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1), // Storage image for ray traced image output
// Compute pipeline uses storage images image loads and stores vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2), // Storage buffer for the scene primitives
vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1),
}; };
VkDescriptorPoolCreateInfo descriptorPoolInfo = VkDescriptorPoolCreateInfo descriptorPoolInfo =
@ -426,7 +548,7 @@ public:
vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue); vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue);
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = { std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Sampled image (write) // Binding 0: Storage image (raytraced output)
vkTools::initializers::descriptorSetLayoutBinding( vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
VK_SHADER_STAGE_COMPUTE_BIT, VK_SHADER_STAGE_COMPUTE_BIT,
@ -435,7 +557,17 @@ public:
vkTools::initializers::descriptorSetLayoutBinding( vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT, VK_SHADER_STAGE_COMPUTE_BIT,
1) 1),
// Binding 1: Shader storage buffer for the spheres
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
2),
// Binding 1: Shader storage buffer for the planes
vkTools::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
VK_SHADER_STAGE_COMPUTE_BIT,
3)
}; };
VkDescriptorSetLayoutCreateInfo descriptorLayout = VkDescriptorSetLayoutCreateInfo descriptorLayout =
@ -473,7 +605,19 @@ public:
compute.descriptorSet, compute.descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
1, 1,
&uniformDataCompute.descriptor) &compute.uniformBuffer.descriptor),
// Binding 2: Shader storage buffer for the spheres
vkTools::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
2,
&compute.storageBuffers.spheres.descriptor),
// Binding 2: Shader storage buffer for the planes
vkTools::initializers::writeDescriptorSet(
compute.descriptorSet,
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
3,
&compute.storageBuffers.planes.descriptor)
}; };
vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL); vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL);
@ -517,22 +661,24 @@ public:
// Compute shader parameter uniform buffer block // Compute shader parameter uniform buffer block
vulkanDevice->createBuffer( vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformDataCompute, &compute.uniformBuffer,
sizeof(uboCompute)); sizeof(compute.ubo));
updateUniformBuffers(); updateUniformBuffers();
} }
void updateUniformBuffers() void updateUniformBuffers()
{ {
uboCompute.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f; compute.ubo.lightPos.x = 0.0f + sin(glm::radians(timer * 360.0f)) * cos(glm::radians(timer * 360.0f)) * 2.0f;
uboCompute.lightPos.y = 5.0f; compute.ubo.lightPos.y = 0.0f + sin(glm::radians(timer * 360.0f)) * 2.0f;
uboCompute.lightPos.z = 1.0f; compute.ubo.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
uboCompute.lightPos.z = 0.0f + cos(glm::radians(timer * 360.0f)) * 2.0f;
VK_CHECK_RESULT(uniformDataCompute.map()); compute.ubo.lightPos.y = 2.0f;
memcpy(uniformDataCompute.mapped, &uboCompute, sizeof(uboCompute));
uniformDataCompute.unmap(); VK_CHECK_RESULT(compute.uniformBuffer.map());
memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo));
compute.uniformBuffer.unmap();
} }
void draw() void draw()
@ -547,7 +693,7 @@ public:
VulkanExampleBase::submitFrame(); VulkanExampleBase::submitFrame();
// Submit compute commands // Submit compute commands
// Use a fence to ensure that compute command buffer has finished executin before using it again // Use a fence to ensure that compute command buffer has finished executing before using it again
vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX); vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX);
vkResetFences(device, 1, &compute.fence); vkResetFences(device, 1, &compute.fence);
@ -561,6 +707,7 @@ public:
void prepare() void prepare()
{ {
VulkanExampleBase::prepare(); VulkanExampleBase::prepare();
prepareStorageBuffers();
prepareUniformBuffers(); prepareUniformBuffers();
prepareTextureTarget(&textureComputeTarget, TEX_DIM, TEX_DIM, VK_FORMAT_R8G8B8A8_UNORM); prepareTextureTarget(&textureComputeTarget, TEX_DIM, TEX_DIM, VK_FORMAT_R8G8B8A8_UNORM);
setupDescriptorSetLayout(); setupDescriptorSetLayout();
@ -585,7 +732,7 @@ public:
virtual void viewChanged() virtual void viewChanged()
{ {
uboCompute.aspectRatio = (float)width / (float)height; compute.ubo.aspectRatio = (float)width / (float)height;
updateUniformBuffers(); updateUniformBuffers();
} }
}; };