Continued work on basic PBR example

This commit is contained in:
saschawillems 2017-02-26 18:57:41 +01:00
parent d1c07df7c0
commit ed6451a956
9 changed files with 209 additions and 251 deletions

View file

@ -1,9 +1,5 @@
#version 450
layout (binding = 1) uniform samplerCube envmap;
layout (binding = 2) uniform samplerCube envmapibldiff;
layout (binding = 3) uniform samplerCube envmapiblrefl;
layout (location = 0) in vec3 inWorldPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec2 inUV;
@ -16,6 +12,10 @@ layout (binding = 0) uniform UBO
vec3 camPos;
} ubo;
layout (binding = 1) uniform UBOShared {
vec4 lights[4];
} uboParams;
layout (location = 0) out vec4 outColor;
layout(push_constant) uniform PushConsts {
@ -30,117 +30,98 @@ const float PI = 3.14159265359;
//#define ROUGHNESS_PATTERN 1
// Fresnel ------------------------------------------------------------------------
float fresnelSchlick(float ct, float F0)
vec3 materialcolor()
{
return F0 + (1.0 - F0) * pow(1.0 - ct, 5.0);
return vec3(material.r, material.g, material.b);
}
// Normal distribution functions ---------------------------------------------------
float NDF_blinnPhong(float dotNH, float alphaSqr)
{
return 1.0 / (PI * alphaSqr) * pow(dotNH, 2.0 / alphaSqr - 2.0);
}
float NDF_beckmann(float dotNH, float alphaSqr)
{
float dotNH2 = dotNH * dotNH;
return 1.0 / (PI * alphaSqr * dotNH2 * dotNH2) * exp((dotNH2 - 1.0) / (alphaSqr * dotNH2));
}
float NDF_GGX(float dotNH, float alphaSqr)
{
return alphaSqr / (PI * pow(dotNH * dotNH * (alphaSqr - 1.0) + 1.0, 2.0));
}
// Geometry visibility functions ---------------------------------------------------
float GEOM_SchlickSmith(float dotNL, float dotNV, float alpha)
{
//float k = alpha * sqrt(2.0 / PI);
float k = pow(0.8 + 0.5 * alpha, 2.0) / 2.0;
float GL = 1.0 / (dotNL * (1.0 - k) + k);
float GV = 1.0 / (dotNV * (1.0 - k) + k);
return GL * GV;
}
float PBR_Shade(vec3 N, vec3 V, vec3 L, float roughness, float F0)
// Normal Distribution function --------------------------------------
float D_GGX(float dotNH, float roughness)
{
float alpha = roughness * roughness;
float alphaSqr = alpha * alpha;
float alpha2 = alpha * alpha;
float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0;
return (alpha2)/(PI * denom*denom);
}
// Geometric Shadowing function --------------------------------------
float G_SchlickmithGGX(float dotNL, float dotNV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float GL = dotNL / (dotNL * (1.0 - k) + k);
float GV = dotNV / (dotNV * (1.0 - k) + k);
return GL * GV;
}
// Fresnel function ----------------------------------------------------
vec3 F_Schlick(float cosTheta, float metallic)
{
vec3 F0 = mix(vec3(0.04), materialcolor(), metallic); // * material.specular
vec3 F = F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
return F;
}
// Specular BRDF composition --------------------------------------------
vec3 BRDF(vec3 L, vec3 V, vec3 N, float metallic, float roughness)
{
// Precalculate vectors and dot products
vec3 H = normalize (V + L);
float dotNL = clamp(dot(N, L), 0.0, 1.0);
float dotNV = clamp(dot(N, V), 0.0, 1.0);
float dotNH = clamp(dot(N, H), 0.0, 1.0);
float dotNL = clamp(dot(N, L), 0.0, 1.0);
float dotLH = clamp(dot(L, H), 0.0, 1.0);
float dotNH = clamp(dot(N, H), 0.0, 1.0);
// Normal distribution
float Di = NDF_GGX(dotNH, alphaSqr);
// Fresnel
float Fs = fresnelSchlick(dotNV, F0);
// Visibility term
float Vs = GEOM_SchlickSmith(dotNL, dotNV, alpha);
// Light color fixed
vec3 lightColor = vec3(1.0);
return Di * Fs * Vs;
vec3 color = vec3(0.0);
if (dotNL > 0.0)
{
float rroughness = max(0.05, roughness);
// D = Normal distribution (Distribution of the microfacets)
float D = D_GGX(dotNH, roughness);
// G = Geometric shadowing term (Microfacets shadowing)
float G = G_SchlickmithGGX(dotNL, dotNV, roughness);
// F = Fresnel factor (Reflectance depending on angle of incidence)
vec3 F = F_Schlick(dotNV, metallic);
vec3 spec = D * F * G / (4.0 * dotNL * dotNV);
color += spec * dotNL * lightColor;
}
return color;
}
// ----------------------------------------------------------------------------
void main()
{
// Partially based on https://www.shadertoy.com/view/XsfXWX by Alexander Alekseev (https://github.com/tdmaav)
// One fixed light source
vec3 lightPos = vec3(-10.0f, -10.0f, 10.0f);
// Take light color from environment map
vec3 lightColor = texture(envmapiblrefl, vec3(0.5)).xyz;
{
vec3 N = normalize(inNormal);
vec3 V = normalize(ubo.camPos - inWorldPos);
vec3 L = normalize(lightPos - inWorldPos);
vec3 R = reflect(-V, N);
// Store material values for quick testing/changing inside the shader
float roughness = material.roughness;
float metallic = material.metallic;
// Add striped pattern to roughness based on vertex position
#ifdef ROUGHNESS_PATTERN
roughness = max(roughness, step(fract(inWorldPos.y * 2.02), 0.5));
#endif
// Get IBL components from cube maps
vec3 IBLdiffuse = texture(envmapibldiff, inNormal).rgb;
vec3 IBLreflection = texture(envmapiblrefl, inNormal).rgb;
// Specular contribution
vec3 Lo = vec3(0.0);
for (int i = 0; i < uboParams.lights.length(); i++) {
vec3 L = normalize(uboParams.lights[i].xyz - inWorldPos);
Lo += BRDF(L, V, N, material.metallic, roughness);
};
// Fresnel part
float fresnel = pow(max(1.0 - abs(dot(N, V)), 0.0), 1.5f + roughness);
// Reflection part
// Combine with ambient
vec3 color = materialcolor() * 0.02;
color += Lo;
// Select mip level based on roughness
ivec2 dim = textureSize(envmap, 0);
float nummips = log2(max(dim.s, dim.y));
vec3 reflection = texture(envmap, R).xyz;
reflection = textureLod(envmap, R, max(roughness * nummips, textureQueryLod(envmap, R).y)).rgb;
reflection = mix(reflection, IBLreflection, (1.0-fresnel) * roughness);
reflection = mix(reflection, IBLreflection, roughness);
// Specular part
// F0 based on metallic factor of material
vec3 F0 = vec3(0.04);
F0 = mix(F0, lightColor, material.metallic);
vec3 spec = lightColor * PBR_Shade(N, V, L, roughness, F0.r);
reflection -= spec;
// Diffuse part
vec3 matColor = vec3(material.r, material.g, material.b);
vec3 diffuse = mix(IBLdiffuse * matColor, reflection, fresnel);
// Gamma correct
color = pow(color, vec3(0.4545));
// Final output mixes based on material metalness
outColor.rgb = mix(diffuse, reflection, metallic) + spec;
outColor = vec4(color, 1.0);
}

Binary file not shown.

View file

@ -1,12 +0,0 @@
#version 450
layout (binding = 1) uniform samplerCube samplerEnv;
layout (location = 0) in vec3 inUVW;
layout (location = 0) out vec4 outFragColor;
void main()
{
outFragColor = texture(samplerEnv, inUVW);
}

Binary file not shown.

View file

@ -1,27 +0,0 @@
#version 450
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (location = 0) in vec3 inPos;
layout (location = 1) in vec3 inNormal;
layout (location = 2) in vec2 inUV;
layout (binding = 0) uniform UBO
{
mat4 projection;
mat4 model;
} ubo;
layout (location = 0) out vec3 outUVW;
out gl_PerVertex
{
vec4 gl_Position;
};
void main()
{
outUVW = inPos;
gl_Position = ubo.projection * ubo.model * vec4(inPos.xyz, 1.0);
}

Binary file not shown.

View file

@ -1,7 +1,9 @@
/*
* Vulkan Example - Physical based rendering (incl. IBL)
* Vulkan Example - Physical based shading basics
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
* See http://graphicrants.blogspot.de/2013/08/specular-brdf-reference.html for a good reference to the different functions that make up a specular BRDF
*
* Copyright (C) 2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -22,7 +24,6 @@
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
@ -33,18 +34,15 @@
struct Material {
float roughness;
float metallic;
float r,g,b; // Color components as single floats because we use push constants
float r, g, b; // Color components as single floats because we use push constants
std::string name;
Material() {};
Material(std::string n, glm::vec3 c, float r, float m) : name(n), roughness(r), metallic(m), r(c.r), g(c.g), b(c.b) { };
};
class VulkanExample : public VulkanExampleBase
{
public:
bool displaySkybox = true;
vks::TextureCubeMap envmap;
vks::TextureCubeMap envmapiblDiff;
vks::TextureCubeMap envmapiblRefl;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
@ -61,46 +59,62 @@ public:
struct {
vks::Buffer object;
vks::Buffer skybox;
vks::Buffer params;
} uniformBuffers;
struct UBOVS {
struct UBOMatrices {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec3 camPos;
} uboVS;
} uboMatrices;
struct {
VkPipeline skybox;
VkPipeline pbr;
} pipelines;
struct {
VkDescriptorSet object;
VkDescriptorSet skybox;
} descriptorSets;
struct UBOParams {
glm::vec4 lights[4];
} uboParams;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
// Default materials to select from
std::vector<Material> materials;
int32_t materialIndex = 0;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Vulkan Example - Physical based rendering";
title = "Vulkan Example - Physical based shading basics";
enableTextOverlay = true;
camera.type = Camera::CameraType::firstperson;
camera.setPosition(glm::vec3(8.0f, 7.25f, -13.0f));
camera.setRotation(glm::vec3(-31.0f, 24.0f, 0.0f));
camera.setPosition(glm::vec3(13.0f, 8.0f, -10.0f));
camera.setRotation(glm::vec3(-31.75f, 45.0f, 0.0f));
camera.movementSpeed = 4.0f;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.rotationSpeed = 0.25f;
width = 1920;
height = 1080;
paused = true;
timerSpeed *= 0.25f;
// Setup some default materials (source: https://seblagarde.wordpress.com/2011/08/17/feeding-a-physical-based-lighting-mode/)
materials.push_back(Material("Gold", glm::vec3(1.0f, 0.765557f, 0.336057f), 0.1f, 1.0f));
materials.push_back(Material("Copper", glm::vec3(0.955008f, 0.637427f, 0.538163f), 0.1f, 1.0f));
materials.push_back(Material("Chromium", glm::vec3(0.549585f, 0.556114f, 0.554256f), 0.1f, 1.0f));
materials.push_back(Material("Nickel", glm::vec3(0.659777f, 0.608679f, 0.525649f), 0.1f, 1.0f));
materials.push_back(Material("Titanium", glm::vec3(0.541931f, 0.496791f, 0.449419f), 0.1f, 1.0f));
materials.push_back(Material("Cobalt", glm::vec3(0.662124f, 0.654864f, 0.633732f), 0.1f, 1.0f));
materials.push_back(Material("Platinum", glm::vec3(0.672411f, 0.637331f, 0.585456f), 0.1f, 1.0f));
// Testing materials
materials.push_back(Material("White", glm::vec3(1.0f), 0.1f, 1.0f));
materials.push_back(Material("Red", glm::vec3(1.0f, 0.0f, 0.0f), 0.1f, 1.0f));
materials.push_back(Material("Blue", glm::vec3(0.0f, 0.0f, 1.0f), 0.1f, 1.0f));
materials.push_back(Material("Black", glm::vec3(0.0f), 0.1f, 1.0f));
materialIndex = 8;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.pbr, nullptr);
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
@ -112,9 +126,7 @@ public:
uniformBuffers.object.destroy();
uniformBuffers.skybox.destroy();
envmap.destroy();
envmapiblDiff.destroy();
envmapiblRefl.destroy();
uniformBuffers.params.destroy();
}
void reBuildCommandBuffers()
@ -153,50 +165,42 @@ public:
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skybox
if (displaySkybox)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.skybox.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0);
}
// Objects
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.pbr);
Material mat;
mat.r = 1.0f;
mat.g = 0.0f;
mat.b = 0.0f;
Material mat = materials[materialIndex];
//#define SINGLE_MESH 1
//#define SINGLE_MESH 1
#ifdef SINGLE_MESH
mat.metallic = 0.1;
mat.roughness = 1.0;
glm::vec3 pos = glm::vec3(0.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material), &mat);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
mat.metallic = 1.0;
mat.roughness = 0.1;
uint32_t objcount = 10;
for (uint32_t x = 0; x < objcount; x++) {
glm::vec3 pos = glm::vec3(float(x - (objcount / 2.0f)) * 2.5f, 0.0f, 0.0f);
mat.roughness = glm::clamp((float)x / (float)objcount, 0.005f, 1.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material), &mat);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
}
#else
for (uint32_t y = 0; y < GRID_DIM; y++) {
for (uint32_t x = 0; x < GRID_DIM; x++) {
glm::vec3 pos = glm::vec3(float(x - (GRID_DIM / 2.0f)) * 2.5f, 0.0f, float(y - (GRID_DIM / 2.0f)) * 2.5f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
mat.metallic = (float)x / (float)GRID_DIM;
mat.roughness = (float)y / (float)GRID_DIM;
mat.metallic = (float)x / (float)(GRID_DIM - 1);
mat.roughness = glm::clamp((float)y / (float)(GRID_DIM - 1), 0.05f, 1.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material), &mat);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
}
@ -213,28 +217,22 @@ public:
// Skybox
models.skybox.loadFromFile(getAssetPath() + "models/cube.obj", vertexLayout, 1.0f, vulkanDevice, queue);
// Objects
std::vector<std::string> filenames = { "geosphere.obj", "teapot.dae", "torusknot.obj", "suzanne.obj" };
std::vector<std::string> filenames = { "geosphere.obj", "teapot.dae", "torusknot.obj", "venus.fbx" };
for (auto file : filenames) {
vks::Model model;
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, OBJ_DIM * (file == "suzanne.obj" ? 2.0f : 1.0f), vulkanDevice, queue);
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, OBJ_DIM * (file == "venus.fbx" ? 3.0f : 1.0f), vulkanDevice, queue);
models.objects.push_back(model);
}
// Example uses three different cubemaps (environment, diffuse for IBL (irradiance) and reflective for IBL)
envmap.loadFromFile(getAssetPath() + "textures/cubemap_uffizi_env.dds", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
envmapiblDiff.loadFromFile(getAssetPath() + "textures/cubemap_uffizi_ibl_diff.dds", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
envmapiblRefl.loadFromFile(getAssetPath() + "textures/cubemap_uffizi_ibl_refl.dds", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
@ -257,8 +255,7 @@ public:
{
// Descriptor Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6)
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
@ -267,27 +264,16 @@ public:
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor sets
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
// 3D object descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &envmap.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &envmapiblDiff.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &envmapiblRefl.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Sky box descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skybox.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &envmapiblRefl.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
@ -358,11 +344,6 @@ public:
pipelineCreateInfo.pVertexInputState = &vertexInputState;
// Skybox pipeline (background cube)
shaderStages[0] = loadShader(getAssetPath() + "shaders/pbr/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/pbr/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox));
// PBR pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/pbr/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/pbr/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
@ -370,8 +351,8 @@ public:
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
// Flip cull mode
rasterizationState.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.pbr));
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
@ -382,34 +363,62 @@ public:
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.object,
sizeof(uboVS)));
sizeof(uboMatrices)));
// Skybox vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.skybox,
sizeof(uboVS)));
sizeof(uboMatrices)));
// Shared parameter uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.params,
sizeof(uboParams)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.object.map());
VK_CHECK_RESULT(uniformBuffers.skybox.map());
VK_CHECK_RESULT(uniformBuffers.params.map());
updateUniformBuffers();
updateLights();
}
void updateUniformBuffers()
{
// 3D object
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::rotate(glm::mat4(), glm::radians(-45.0f), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.camPos = camera.position * -1.0f;
memcpy(uniformBuffers.object.mapped, &uboVS, sizeof(uboVS));
uboMatrices.projection = camera.matrices.perspective;
uboMatrices.view = camera.matrices.view;
uboMatrices.model = glm::rotate(glm::mat4(), glm::radians(-90.0f + (models.objectIndex == 1 ? 45.0f : 0.0f)), glm::vec3(0.0f, 1.0f, 0.0f));
uboMatrices.camPos = camera.position * -1.0f;
memcpy(uniformBuffers.object.mapped, &uboMatrices, sizeof(uboMatrices));
// Skybox
uboVS.model = glm::mat4(glm::mat3(camera.matrices.view));
memcpy(uniformBuffers.skybox.mapped, &uboVS, sizeof(uboVS));
uboMatrices.model = glm::mat4(glm::mat3(camera.matrices.view));
memcpy(uniformBuffers.skybox.mapped, &uboMatrices, sizeof(uboMatrices));
}
void updateLights()
{
const float p = 15.0f;
uboParams.lights[0] = glm::vec4(-p, -p*0.5f, -p, 1.0f);
uboParams.lights[1] = glm::vec4(-p, -p*0.5f, p, 1.0f);
uboParams.lights[2] = glm::vec4( p, -p*0.5f, p, 1.0f);
uboParams.lights[3] = glm::vec4( p, -p*0.5f, -p, 1.0f);
if (!paused)
{
uboParams.lights[0].x = sin(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[0].z = cos(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[1].x = cos(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[1].y = sin(glm::radians(timer * 360.0f)) * 20.0f;
}
memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams));
}
void draw()
@ -440,17 +449,14 @@ public:
if (!prepared)
return;
draw();
if (!paused)
updateLights();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void toggleSkyBox()
{
displaySkybox = !displaySkybox;
reBuildCommandBuffers();
updateTextOverlay();
}
void toggleObject()
@ -460,31 +466,49 @@ public:
{
models.objectIndex = 0;
}
updateUniformBuffers();
reBuildCommandBuffers();
}
void toggleMaterial(int32_t dir)
{
materialIndex += dir;
if (materialIndex < 0) {
materialIndex = static_cast<int32_t>(materials.size()) - 1;
}
if (materialIndex > static_cast<int32_t>(materials.size()) - 1) {
materialIndex = 0;
}
reBuildCommandBuffers();
updateTextOverlay();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_F2:
case GAMEPAD_BUTTON_A:
toggleSkyBox();
break;
case KEY_SPACE:
case GAMEPAD_BUTTON_X:
toggleObject();
break;
case KEY_KPADD:
case GAMEPAD_BUTTON_R1:
toggleMaterial(1);
break;
case KEY_KPSUB:
case GAMEPAD_BUTTON_L1:
toggleMaterial(-1);
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("\"Button A\" to toggle skybox", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("\"Button X\" to toggle object", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Base material: " + materials[materialIndex].name + " (L1/R1)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("\"X\" to toggle object", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("\"F2\" to toggle skybox", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Base material: " + materials[materialIndex].name + " (-/+)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("\"space\" to toggle object", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
#endif
}

View file

@ -92,8 +92,6 @@
<ItemGroup>
<None Include="..\data\shaders\pbr\pbr.frag" />
<None Include="..\data\shaders\pbr\pbr.vert" />
<None Include="..\data\shaders\pbr\skybox.frag" />
<None Include="..\data\shaders\pbr\skybox.vert" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">

View file

@ -49,11 +49,5 @@
<None Include="..\data\shaders\pbr\pbr.vert">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\pbr\skybox.frag">
<Filter>Shaders</Filter>
</None>
<None Include="..\data\shaders\pbr\skybox.vert">
<Filter>Shaders</Filter>
</None>
</ItemGroup>
</Project>