Continued work on basic PBR example

This commit is contained in:
saschawillems 2017-02-26 18:57:41 +01:00
parent d1c07df7c0
commit ed6451a956
9 changed files with 209 additions and 251 deletions

View file

@ -1,7 +1,9 @@
/*
* Vulkan Example - Physical based rendering (incl. IBL)
* Vulkan Example - Physical based shading basics
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
* See http://graphicrants.blogspot.de/2013/08/specular-brdf-reference.html for a good reference to the different functions that make up a specular BRDF
*
* Copyright (C) 2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -22,7 +24,6 @@
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanBuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
@ -33,18 +34,15 @@
struct Material {
float roughness;
float metallic;
float r,g,b; // Color components as single floats because we use push constants
float r, g, b; // Color components as single floats because we use push constants
std::string name;
Material() {};
Material(std::string n, glm::vec3 c, float r, float m) : name(n), roughness(r), metallic(m), r(c.r), g(c.g), b(c.b) { };
};
class VulkanExample : public VulkanExampleBase
{
public:
bool displaySkybox = true;
vks::TextureCubeMap envmap;
vks::TextureCubeMap envmapiblDiff;
vks::TextureCubeMap envmapiblRefl;
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
@ -61,46 +59,62 @@ public:
struct {
vks::Buffer object;
vks::Buffer skybox;
vks::Buffer params;
} uniformBuffers;
struct UBOVS {
struct UBOMatrices {
glm::mat4 projection;
glm::mat4 model;
glm::mat4 view;
glm::vec3 camPos;
} uboVS;
} uboMatrices;
struct {
VkPipeline skybox;
VkPipeline pbr;
} pipelines;
struct {
VkDescriptorSet object;
VkDescriptorSet skybox;
} descriptorSets;
struct UBOParams {
glm::vec4 lights[4];
} uboParams;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
// Default materials to select from
std::vector<Material> materials;
int32_t materialIndex = 0;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "Vulkan Example - Physical based rendering";
title = "Vulkan Example - Physical based shading basics";
enableTextOverlay = true;
camera.type = Camera::CameraType::firstperson;
camera.setPosition(glm::vec3(8.0f, 7.25f, -13.0f));
camera.setRotation(glm::vec3(-31.0f, 24.0f, 0.0f));
camera.setPosition(glm::vec3(13.0f, 8.0f, -10.0f));
camera.setRotation(glm::vec3(-31.75f, 45.0f, 0.0f));
camera.movementSpeed = 4.0f;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.rotationSpeed = 0.25f;
width = 1920;
height = 1080;
paused = true;
timerSpeed *= 0.25f;
// Setup some default materials (source: https://seblagarde.wordpress.com/2011/08/17/feeding-a-physical-based-lighting-mode/)
materials.push_back(Material("Gold", glm::vec3(1.0f, 0.765557f, 0.336057f), 0.1f, 1.0f));
materials.push_back(Material("Copper", glm::vec3(0.955008f, 0.637427f, 0.538163f), 0.1f, 1.0f));
materials.push_back(Material("Chromium", glm::vec3(0.549585f, 0.556114f, 0.554256f), 0.1f, 1.0f));
materials.push_back(Material("Nickel", glm::vec3(0.659777f, 0.608679f, 0.525649f), 0.1f, 1.0f));
materials.push_back(Material("Titanium", glm::vec3(0.541931f, 0.496791f, 0.449419f), 0.1f, 1.0f));
materials.push_back(Material("Cobalt", glm::vec3(0.662124f, 0.654864f, 0.633732f), 0.1f, 1.0f));
materials.push_back(Material("Platinum", glm::vec3(0.672411f, 0.637331f, 0.585456f), 0.1f, 1.0f));
// Testing materials
materials.push_back(Material("White", glm::vec3(1.0f), 0.1f, 1.0f));
materials.push_back(Material("Red", glm::vec3(1.0f, 0.0f, 0.0f), 0.1f, 1.0f));
materials.push_back(Material("Blue", glm::vec3(0.0f, 0.0f, 1.0f), 0.1f, 1.0f));
materials.push_back(Material("Black", glm::vec3(0.0f), 0.1f, 1.0f));
materialIndex = 8;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipelines.skybox, nullptr);
vkDestroyPipeline(device, pipelines.pbr, nullptr);
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
@ -112,9 +126,7 @@ public:
uniformBuffers.object.destroy();
uniformBuffers.skybox.destroy();
envmap.destroy();
envmapiblDiff.destroy();
envmapiblRefl.destroy();
uniformBuffers.params.destroy();
}
void reBuildCommandBuffers()
@ -153,50 +165,42 @@ public:
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Skybox
if (displaySkybox)
{
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.skybox.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox);
vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0);
}
// Objects
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.objects[models.objectIndex].vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.pbr);
Material mat;
mat.r = 1.0f;
mat.g = 0.0f;
mat.b = 0.0f;
Material mat = materials[materialIndex];
//#define SINGLE_MESH 1
//#define SINGLE_MESH 1
#ifdef SINGLE_MESH
mat.metallic = 0.1;
mat.roughness = 1.0;
glm::vec3 pos = glm::vec3(0.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material), &mat);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
mat.metallic = 1.0;
mat.roughness = 0.1;
uint32_t objcount = 10;
for (uint32_t x = 0; x < objcount; x++) {
glm::vec3 pos = glm::vec3(float(x - (objcount / 2.0f)) * 2.5f, 0.0f, 0.0f);
mat.roughness = glm::clamp((float)x / (float)objcount, 0.005f, 1.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material), &mat);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
}
#else
for (uint32_t y = 0; y < GRID_DIM; y++) {
for (uint32_t x = 0; x < GRID_DIM; x++) {
glm::vec3 pos = glm::vec3(float(x - (GRID_DIM / 2.0f)) * 2.5f, 0.0f, float(y - (GRID_DIM / 2.0f)) * 2.5f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos);
mat.metallic = (float)x / (float)GRID_DIM;
mat.roughness = (float)y / (float)GRID_DIM;
mat.metallic = (float)x / (float)(GRID_DIM - 1);
mat.roughness = glm::clamp((float)y / (float)(GRID_DIM - 1), 0.05f, 1.0f);
vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material), &mat);
vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0);
}
@ -213,28 +217,22 @@ public:
// Skybox
models.skybox.loadFromFile(getAssetPath() + "models/cube.obj", vertexLayout, 1.0f, vulkanDevice, queue);
// Objects
std::vector<std::string> filenames = { "geosphere.obj", "teapot.dae", "torusknot.obj", "suzanne.obj" };
std::vector<std::string> filenames = { "geosphere.obj", "teapot.dae", "torusknot.obj", "venus.fbx" };
for (auto file : filenames) {
vks::Model model;
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, OBJ_DIM * (file == "suzanne.obj" ? 2.0f : 1.0f), vulkanDevice, queue);
model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, OBJ_DIM * (file == "venus.fbx" ? 3.0f : 1.0f), vulkanDevice, queue);
models.objects.push_back(model);
}
// Example uses three different cubemaps (environment, diffuse for IBL (irradiance) and reflective for IBL)
envmap.loadFromFile(getAssetPath() + "textures/cubemap_uffizi_env.dds", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
envmapiblDiff.loadFromFile(getAssetPath() + "textures/cubemap_uffizi_ibl_diff.dds", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
envmapiblRefl.loadFromFile(getAssetPath() + "textures/cubemap_uffizi_ibl_refl.dds", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3),
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
@ -257,8 +255,7 @@ public:
{
// Descriptor Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6)
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
@ -267,27 +264,16 @@ public:
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor sets
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
// 3D object descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object));
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &envmap.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &envmapiblDiff.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &envmapiblRefl.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
// Sky box descriptor set
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox));
writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skybox.descriptor),
vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &envmapiblRefl.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor),
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
@ -358,11 +344,6 @@ public:
pipelineCreateInfo.pVertexInputState = &vertexInputState;
// Skybox pipeline (background cube)
shaderStages[0] = loadShader(getAssetPath() + "shaders/pbr/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/pbr/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox));
// PBR pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/pbr/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/pbr/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
@ -370,8 +351,8 @@ public:
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthTestEnable = VK_TRUE;
// Flip cull mode
rasterizationState.cullMode = VK_CULL_MODE_NONE;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.pbr));
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
@ -382,34 +363,62 @@ public:
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.object,
sizeof(uboVS)));
sizeof(uboMatrices)));
// Skybox vertex shader uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.skybox,
sizeof(uboVS)));
sizeof(uboMatrices)));
// Shared parameter uniform buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.params,
sizeof(uboParams)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.object.map());
VK_CHECK_RESULT(uniformBuffers.skybox.map());
VK_CHECK_RESULT(uniformBuffers.params.map());
updateUniformBuffers();
updateLights();
}
void updateUniformBuffers()
{
// 3D object
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
uboVS.model = glm::rotate(glm::mat4(), glm::radians(-45.0f), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.camPos = camera.position * -1.0f;
memcpy(uniformBuffers.object.mapped, &uboVS, sizeof(uboVS));
uboMatrices.projection = camera.matrices.perspective;
uboMatrices.view = camera.matrices.view;
uboMatrices.model = glm::rotate(glm::mat4(), glm::radians(-90.0f + (models.objectIndex == 1 ? 45.0f : 0.0f)), glm::vec3(0.0f, 1.0f, 0.0f));
uboMatrices.camPos = camera.position * -1.0f;
memcpy(uniformBuffers.object.mapped, &uboMatrices, sizeof(uboMatrices));
// Skybox
uboVS.model = glm::mat4(glm::mat3(camera.matrices.view));
memcpy(uniformBuffers.skybox.mapped, &uboVS, sizeof(uboVS));
uboMatrices.model = glm::mat4(glm::mat3(camera.matrices.view));
memcpy(uniformBuffers.skybox.mapped, &uboMatrices, sizeof(uboMatrices));
}
void updateLights()
{
const float p = 15.0f;
uboParams.lights[0] = glm::vec4(-p, -p*0.5f, -p, 1.0f);
uboParams.lights[1] = glm::vec4(-p, -p*0.5f, p, 1.0f);
uboParams.lights[2] = glm::vec4( p, -p*0.5f, p, 1.0f);
uboParams.lights[3] = glm::vec4( p, -p*0.5f, -p, 1.0f);
if (!paused)
{
uboParams.lights[0].x = sin(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[0].z = cos(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[1].x = cos(glm::radians(timer * 360.0f)) * 20.0f;
uboParams.lights[1].y = sin(glm::radians(timer * 360.0f)) * 20.0f;
}
memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams));
}
void draw()
@ -440,17 +449,14 @@ public:
if (!prepared)
return;
draw();
if (!paused)
updateLights();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
void toggleSkyBox()
{
displaySkybox = !displaySkybox;
reBuildCommandBuffers();
updateTextOverlay();
}
void toggleObject()
@ -460,31 +466,49 @@ public:
{
models.objectIndex = 0;
}
updateUniformBuffers();
reBuildCommandBuffers();
}
void toggleMaterial(int32_t dir)
{
materialIndex += dir;
if (materialIndex < 0) {
materialIndex = static_cast<int32_t>(materials.size()) - 1;
}
if (materialIndex > static_cast<int32_t>(materials.size()) - 1) {
materialIndex = 0;
}
reBuildCommandBuffers();
updateTextOverlay();
}
virtual void keyPressed(uint32_t keyCode)
{
switch (keyCode)
{
case KEY_F2:
case GAMEPAD_BUTTON_A:
toggleSkyBox();
break;
case KEY_SPACE:
case GAMEPAD_BUTTON_X:
toggleObject();
break;
case KEY_KPADD:
case GAMEPAD_BUTTON_R1:
toggleMaterial(1);
break;
case KEY_KPSUB:
case GAMEPAD_BUTTON_L1:
toggleMaterial(-1);
break;
}
}
virtual void getOverlayText(VulkanTextOverlay *textOverlay)
{
#if defined(__ANDROID__)
textOverlay->addText("\"Button A\" to toggle skybox", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("\"Button X\" to toggle object", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Base material: " + materials[materialIndex].name + " (L1/R1)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("\"X\" to toggle object", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
#else
textOverlay->addText("\"F2\" to toggle skybox", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("Base material: " + materials[materialIndex].name + " (-/+)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft);
textOverlay->addText("\"space\" to toggle object", 5.0f, 100.0f, VulkanTextOverlay::alignLeft);
#endif
}