Self-contained model loading for better comprehensibility, code cleanup and refactoring

This commit is contained in:
saschawillems 2017-02-11 12:35:18 +01:00
parent 42e3bc1f6b
commit efc1f0b5d6

View file

@ -18,10 +18,16 @@
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <assimp/cimport.h>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanTexture.hpp"
#include "vulkanbuffer.hpp"
#include "VulkanTexture.hpp"
#include "VulkanModel.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
@ -37,15 +43,15 @@ struct Vertex {
uint32_t boneIDs[4];
};
std::vector<vkMeshLoader::VertexLayout> vertexLayout =
{
vkMeshLoader::VERTEX_LAYOUT_POSITION,
vkMeshLoader::VERTEX_LAYOUT_NORMAL,
vkMeshLoader::VERTEX_LAYOUT_UV,
vkMeshLoader::VERTEX_LAYOUT_COLOR,
vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4,
vkMeshLoader::VERTEX_LAYOUT_DUMMY_VEC4
};
// Vertex layout for the models
vks::VertexLayout vertexLayout = vks::VertexLayout({
vks::VERTEX_COMPONENT_POSITION,
vks::VERTEX_COMPONENT_NORMAL,
vks::VERTEX_COMPONENT_UV,
vks::VERTEX_COMPONENT_COLOR,
vks::VERTEX_COMPONENT_DUMMY_VEC4,
vks::VERTEX_COMPONENT_DUMMY_VEC4,
});
// Maximum number of bones per mesh
// Must not be higher than same const in skinning shader
@ -112,20 +118,21 @@ public:
aiAnimation* pAnimation;
// Vulkan buffers
vkMeshLoader::MeshBuffer meshBuffer;
// Reference to assimp mesh
// Required for animation
VulkanMeshLoader *meshLoader;
vks::Model vertexBuffer;
// Store reference to the ASSIMP scene for accessing properties of it during animation
Assimp::Importer Importer;
const aiScene* scene;
// Set active animation by index
void setAnimation(uint32_t animationIndex)
{
assert(animationIndex < meshLoader->pScene->mNumAnimations);
pAnimation = meshLoader->pScene->mAnimations[animationIndex];
assert(animationIndex < scene->mNumAnimations);
pAnimation = scene->mAnimations[animationIndex];
}
// Load bone information from ASSIMP mesh
void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector<VertexBoneData>& Bones)
void loadBones(const aiMesh* pMesh, uint32_t vertexOffset, std::vector<VertexBoneData>& Bones)
{
for (uint32_t i = 0; i < pMesh->mNumBones; i++)
{
@ -152,7 +159,7 @@ public:
for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++)
{
uint32_t vertexID = meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId;
uint32_t vertexID = vertexOffset + pMesh->mBones[i]->mWeights[j].mVertexId;
Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight);
}
}
@ -162,12 +169,12 @@ public:
// Recursive bone transformation for given animation time
void update(float time)
{
float TicksPerSecond = (float)(meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TicksPerSecond = (float)(scene->mAnimations[0]->mTicksPerSecond != 0 ? scene->mAnimations[0]->mTicksPerSecond : 25.0f);
float TimeInTicks = time * TicksPerSecond;
float AnimationTime = fmod(TimeInTicks, (float)meshLoader->pScene->mAnimations[0]->mDuration);
float AnimationTime = fmod(TimeInTicks, (float)scene->mAnimations[0]->mDuration);
aiMatrix4x4 identity = aiMatrix4x4();
readNodeHierarchy(AnimationTime, meshLoader->pScene->mRootNode, identity);
readNodeHierarchy(AnimationTime, scene->mRootNode, identity);
for (uint32_t i = 0; i < boneTransforms.size(); i++)
{
@ -175,6 +182,12 @@ public:
}
}
~SkinnedMesh()
{
vertexBuffer.vertices.destroy();
vertexBuffer.indices.destroy();
}
private:
// Find animation for a given node
const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName)
@ -344,12 +357,6 @@ public:
vks::Texture2D floor;
} textures;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
SkinnedMesh *skinnedMesh = nullptr;
struct {
@ -381,8 +388,8 @@ public:
} pipelines;
struct {
vkMeshLoader::MeshBuffer floor;
} meshes;
vks::Model floor;
} models;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
@ -422,10 +429,7 @@ public:
uniformBuffers.mesh.destroy();
uniformBuffers.floor.destroy();
// Destroy and free mesh resources
vkMeshLoader::freeMeshBufferResources(device, &meshes.floor);
vkMeshLoader::freeMeshBufferResources(device, &skinnedMesh->meshBuffer);
delete(skinnedMesh->meshLoader);
models.floor.destroy();
delete(skinnedMesh);
}
@ -466,17 +470,17 @@ public:
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skinning);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &skinnedMesh->meshBuffer.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], skinnedMesh->meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], skinnedMesh->meshBuffer.indexCount, 1, 0, 0, 0);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &skinnedMesh->vertexBuffer.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], skinnedMesh->vertexBuffer.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], skinnedMesh->vertexBuffer.indexCount, 1, 0, 0, 0);
// Floor
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.floor, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.texture);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.floor.vertices.buf, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.floor.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], meshes.floor.indexCount, 1, 0, 0, 0);
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.floor.vertices.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.floor.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], models.floor.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
@ -485,73 +489,92 @@ public:
}
// Load a mesh based on data read via assimp
// The other example will use the VulkanMesh loader which has some additional functionality for loading meshes
void loadMesh()
{
skinnedMesh = new SkinnedMesh();
skinnedMesh->meshLoader = new VulkanMeshLoader(vulkanDevice);
std::string filename = getAssetPath() + "models/goblin.dae";
#if defined(__ANDROID__)
skinnedMesh->meshLoader->assetManager = androidApp->activity->assetManager;
// Meshes are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *meshData = malloc(size);
AAsset_read(asset, meshData, size);
AAsset_close(asset);
skinnedMesh->scene = skinnedMesh->Importer.ReadFileFromMemory(meshData, size, 0);
free(meshData);
#else
skinnedMesh->scene = skinnedMesh->Importer.ReadFile(filename.c_str(), 0);
#endif
skinnedMesh->meshLoader->LoadMesh(getAssetPath() + "models/goblin.dae", 0);
skinnedMesh->setAnimation(0);
// Setup bones
// One vertex bone info structure per vertex
skinnedMesh->bones.resize(skinnedMesh->meshLoader->numVertices);
uint32_t vertexCount(0);
for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) {
vertexCount += skinnedMesh->scene->mMeshes[m]->mNumVertices;
};
skinnedMesh->bones.resize(vertexCount);
// Store global inverse transform matrix of root node
skinnedMesh->globalInverseTransform = skinnedMesh->meshLoader->pScene->mRootNode->mTransformation;
skinnedMesh->globalInverseTransform = skinnedMesh->scene->mRootNode->mTransformation;
skinnedMesh->globalInverseTransform.Inverse();
// Load bones (weights and IDs)
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
aiMesh *paiMesh = skinnedMesh->meshLoader->pScene->mMeshes[m];
if (paiMesh->mNumBones > 0)
{
skinnedMesh->loadBones(m, paiMesh, skinnedMesh->bones);
uint32_t vertexBase(0);
for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) {
aiMesh *paiMesh = skinnedMesh->scene->mMeshes[m];
if (paiMesh->mNumBones > 0) {
skinnedMesh->loadBones(paiMesh, vertexBase, skinnedMesh->bones);
}
vertexBase += skinnedMesh->scene->mMeshes[m]->mNumVertices;
}
// Generate vertex buffer
std::vector<Vertex> vertexBuffer;
// Iterate through all meshes in the file
// and extract the vertex information used in this demo
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
for (uint32_t i = 0; i < skinnedMesh->meshLoader->m_Entries[m].Vertices.size(); i++)
{
// Iterate through all meshes in the file and extract the vertex information used in this demo
vertexBase = 0;
for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) {
for (uint32_t v = 0; v < skinnedMesh->scene->mMeshes[m]->mNumVertices; v++) {
Vertex vertex;
vertex.pos = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_pos;
vertex.pos.y = -vertex.pos.y;
vertex.normal = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_normal;
vertex.uv = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_tex;
vertex.color = skinnedMesh->meshLoader->m_Entries[m].Vertices[i].m_color;
vertex.pos = glm::make_vec3(&skinnedMesh->scene->mMeshes[m]->mVertices[v].x);
vertex.normal = glm::make_vec3(&skinnedMesh->scene->mMeshes[m]->mNormals[v].x);
vertex.uv = glm::make_vec2(&skinnedMesh->scene->mMeshes[m]->mTextureCoords[0][v].x);
vertex.color = (skinnedMesh->scene->mMeshes[m]->HasVertexColors(0)) ? glm::make_vec3(&skinnedMesh->scene->mMeshes[m]->mColors[0][v].r) : glm::vec3(1.0f);
// Fetch bone weights and IDs
for (uint32_t j = 0; j < MAX_BONES_PER_VERTEX; j++)
{
vertex.boneWeights[j] = skinnedMesh->bones[skinnedMesh->meshLoader->m_Entries[m].vertexBase + i].weights[j];
vertex.boneIDs[j] = skinnedMesh->bones[skinnedMesh->meshLoader->m_Entries[m].vertexBase + i].IDs[j];
for (uint32_t j = 0; j < MAX_BONES_PER_VERTEX; j++) {
vertex.boneWeights[j] = skinnedMesh->bones[vertexBase + v].weights[j];
vertex.boneIDs[j] = skinnedMesh->bones[vertexBase + v].IDs[j];
}
vertexBuffer.push_back(vertex);
}
vertexBase += skinnedMesh->scene->mMeshes[m]->mNumVertices;
}
VkDeviceSize vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Generate index buffer from loaded mesh file
std::vector<uint32_t> indexBuffer;
for (uint32_t m = 0; m < skinnedMesh->meshLoader->m_Entries.size(); m++)
{
for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) {
uint32_t indexBase = static_cast<uint32_t>(indexBuffer.size());
for (uint32_t i = 0; i < skinnedMesh->meshLoader->m_Entries[m].Indices.size(); i++)
for (uint32_t f = 0; f < skinnedMesh->scene->mMeshes[m]->mNumFaces; f++) {
for (uint32_t i = 0; i < 3; i++)
{
indexBuffer.push_back(skinnedMesh->meshLoader->m_Entries[m].Indices[i] + indexBase);
indexBuffer.push_back(skinnedMesh->scene->mMeshes[m]->mFaces[f].mIndices[i] + indexBase);
}
}
}
VkDeviceSize indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
skinnedMesh->meshBuffer.indexCount = indexBuffer.size();
skinnedMesh->vertexBuffer.indexCount = static_cast<uint32_t>(indexBuffer.size());
struct {
VkBuffer buffer;
@ -581,16 +604,14 @@ public:
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
vertexBufferSize,
&skinnedMesh->meshBuffer.vertices.buf,
&skinnedMesh->meshBuffer.vertices.mem));
&skinnedMesh->vertexBuffer.vertices,
vertexBufferSize));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
indexBufferSize,
&skinnedMesh->meshBuffer.indices.buf,
&skinnedMesh->meshBuffer.indices.mem));
&skinnedMesh->vertexBuffer.indices,
indexBufferSize));
// Copy from staging buffers
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
@ -601,7 +622,7 @@ public:
vkCmdCopyBuffer(
copyCmd,
vertexStaging.buffer,
skinnedMesh->meshBuffer.vertices.buf,
skinnedMesh->vertexBuffer.vertices.buffer,
1,
&copyRegion);
@ -609,7 +630,7 @@ public:
vkCmdCopyBuffer(
copyCmd,
indexStaging.buffer,
skinnedMesh->meshBuffer.indices.buf,
skinnedMesh->vertexBuffer.indices.buffer,
1,
&copyRegion);
@ -625,70 +646,7 @@ public:
{
textures.colorMap.loadFromFile(getAssetPath() + "textures/goblin_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
textures.floor.loadFromFile(getAssetPath() + "textures/trail_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue);
VulkanExampleBase::loadMesh(getAssetPath() + "models/plane_z.obj", &meshes.floor, vertexLayout, 512.0f);
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vkTools::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(6);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Texture coordinates
vertices.attributeDescriptions[2] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32_SFLOAT,
sizeof(float) * 6);
// Location 3 : Color
vertices.attributeDescriptions[3] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
3,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 8);
// Location 4 : Bone weights
vertices.attributeDescriptions[4] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
4,
VK_FORMAT_R32G32B32A32_SFLOAT,
sizeof(float) * 11);
// Location 5 : Bone IDs
vertices.attributeDescriptions[5] =
vkTools::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
5,
VK_FORMAT_R32G32B32A32_SINT,
sizeof(float) * 15);
vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
models.floor.loadFromFile(getAssetPath() + "models/plane_z.obj", vertexLayout, 512.0f, vulkanDevice, queue);
}
void setupDescriptorPool()
@ -852,16 +810,12 @@ public:
// Skinned rendering pipeline
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vkTools::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
@ -869,11 +823,40 @@ public:
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// Shared vertex inputs
// Binding description
VkVertexInputBindingDescription vertexInputBinding =
vkTools::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(float) * 11), // Location 4: Bone weights
vkTools::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32A32_SINT, sizeof(float) * 15), // Location 5: Bone IDs
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vkTools::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = 1;
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCreateInfo.pVertexInputState = &vertexInputState;
// Skinned mesh rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skinning));
// Environment rendering pipeline
shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.texture));
@ -960,7 +943,6 @@ public:
VulkanExampleBase::prepare();
loadAssets();
loadMesh();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();