Complete rework of the sample

Simplified, added comments and only use single buffers to show best practices
This commit is contained in:
Sascha Willems 2024-01-06 16:47:11 +01:00
parent f5cddbd207
commit eff719099a
7 changed files with 435 additions and 626 deletions

View file

@ -1,55 +1,416 @@
/*
* Vulkan Example - Animated gears using multiple uniform buffers
*
* Vulkan Example - Drawing multiple animated gears (emulating the look of glxgears)
*
* All gears are using single index, vertex and uniform buffers to show the Vulkan best practices of keeping the no. of buffer/memory allocations to a mimimum
* We use index offsets and instance indices to offset into the buffers at draw time for each gear
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkangear.h"
#include "vulkanexamplebase.h"
const uint32_t numGears = 3;
// Used for passing the definition of a gear during construction
struct GearDefinition {
float innerRadius;
float outerRadius;
float width;
int numTeeth;
float toothDepth;
glm::vec3 color;
glm::vec3 pos;
float rotSpeed;
float rotOffset;
};
/*
* Gear
* This class contains the properties of a single gear and a function to generate vertices and indices
*/
class Gear
{
public:
// Definition for the vertex data used to render the gears
struct Vertex {
glm::vec3 position;
glm::vec3 normal;
glm::vec3 color;
};
glm::vec3 color;
glm::vec3 pos;
float rotSpeed{ 0.0f };
float rotOffset{ 0.0f };
// These are used at draw time to offset into the single buffers
uint32_t indexCount{ 0 };
uint32_t indexStart{ 0 };
// Generates the indices and vertices for this gear
// They are added to the vertex and index buffers passed into the function
// This way we can put all gears into single vertex and index buffers instead of having to allocate single buffers for each gear (which would be bad practice)
void generate(GearDefinition& gearDefinition, std::vector<Vertex>& vertexBuffer, std::vector<uint32_t>& indexBuffer) {
this->color = gearDefinition.color;
this->pos = gearDefinition.pos;
this->rotOffset = gearDefinition.rotOffset;
this->rotSpeed = gearDefinition.rotSpeed;
int i;
float r0, r1, r2;
float ta, da;
float u1, v1, u2, v2, len;
float cos_ta, cos_ta_1da, cos_ta_2da, cos_ta_3da, cos_ta_4da;
float sin_ta, sin_ta_1da, sin_ta_2da, sin_ta_3da, sin_ta_4da;
int32_t ix0, ix1, ix2, ix3, ix4, ix5;
// We need to know where this triangle's indices start within the single index buffer
indexStart = static_cast<uint32_t>(indexBuffer.size());
r0 = gearDefinition.innerRadius;
r1 = gearDefinition.outerRadius - gearDefinition.toothDepth / 2.0f;
r2 = gearDefinition.outerRadius + gearDefinition.toothDepth / 2.0f;
da = static_cast <float>(2.0 * M_PI / gearDefinition.numTeeth / 4.0);
glm::vec3 normal;
// Use lambda functions to simplify vertex and face creation
auto addFace = [&indexBuffer](int a, int b, int c) {
indexBuffer.push_back(a);
indexBuffer.push_back(b);
indexBuffer.push_back(c);
};
auto addVertex = [this, &vertexBuffer](float x, float y, float z, glm::vec3 normal) {
Vertex v{};
v.position = { x, y, z };
v.normal = normal;
v.color = this->color;
vertexBuffer.push_back(v);
return static_cast<int32_t>(vertexBuffer.size()) - 1;
};
for (i = 0; i < gearDefinition.numTeeth; i++) {
ta = i * static_cast <float>(2.0 * M_PI / gearDefinition.numTeeth);
cos_ta = cos(ta);
cos_ta_1da = cos(ta + da);
cos_ta_2da = cos(ta + 2.0f * da);
cos_ta_3da = cos(ta + 3.0f * da);
cos_ta_4da = cos(ta + 4.0f * da);
sin_ta = sin(ta);
sin_ta_1da = sin(ta + da);
sin_ta_2da = sin(ta + 2.0f * da);
sin_ta_3da = sin(ta + 3.0f * da);
sin_ta_4da = sin(ta + 4.0f * da);
u1 = r2 * cos_ta_1da - r1 * cos_ta;
v1 = r2 * sin_ta_1da - r1 * sin_ta;
len = sqrt(u1 * u1 + v1 * v1);
u1 /= len;
v1 /= len;
u2 = r1 * cos_ta_3da - r2 * cos_ta_2da;
v2 = r1 * sin_ta_3da - r2 * sin_ta_2da;
// Front face
normal = glm::vec3(0.0f, 0.0f, 1.0f);
ix0 = addVertex(r0 * cos_ta, r0 * sin_ta, gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r1 * cos_ta, r1 * sin_ta, gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r0 * cos_ta, r0 * sin_ta, gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal);
ix4 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, gearDefinition.width * 0.5f, normal);
ix5 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
addFace(ix2, ix3, ix4);
addFace(ix3, ix5, ix4);
// Teeth front face
normal = glm::vec3(0.0f, 0.0f, 1.0f);
ix0 = addVertex(r1 * cos_ta, r1 * sin_ta, gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
// Back face
normal = glm::vec3(0.0f, 0.0f, -1.0f);
ix0 = addVertex(r1 * cos_ta, r1 * sin_ta, -gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r0 * cos_ta, r0 * sin_ta, -gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r0 * cos_ta, r0 * sin_ta, -gearDefinition.width * 0.5f, normal);
ix4 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, -gearDefinition.width * 0.5f, normal);
ix5 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, -gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
addFace(ix2, ix3, ix4);
addFace(ix3, ix5, ix4);
// Teeth back face
normal = glm::vec3(0.0f, 0.0f, -1.0f);
ix0 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, -gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r1 * cos_ta, r1 * sin_ta, -gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, -gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
// Outard teeth faces
normal = glm::vec3(v1, -u1, 0.0f);
ix0 = addVertex(r1 * cos_ta, r1 * sin_ta, gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r1 * cos_ta, r1 * sin_ta, -gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, -gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
normal = glm::vec3(cos_ta, sin_ta, 0.0f);
ix0 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, -gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, -gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
normal = glm::vec3(v2, -u2, 0.0f);
ix0 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, -gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
normal = glm::vec3(cos_ta, sin_ta, 0.0f);
ix0 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal);
ix1 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal);
ix2 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, gearDefinition.width * 0.5f, normal);
ix3 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, -gearDefinition.width * 0.5f, normal);
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
// Inside cylinder faces
ix0 = addVertex(r0 * cos_ta, r0 * sin_ta, -gearDefinition.width * 0.5f, glm::vec3(-cos_ta, -sin_ta, 0.0f));
ix1 = addVertex(r0 * cos_ta, r0 * sin_ta, gearDefinition.width * 0.5f, glm::vec3(-cos_ta, -sin_ta, 0.0f));
ix2 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, -gearDefinition.width * 0.5f, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0f));
ix3 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, gearDefinition.width * 0.5f, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0f));
addFace(ix0, ix1, ix2);
addFace(ix1, ix3, ix2);
}
// We need to know how many indices this triangle has at draw time
indexCount = static_cast<uint32_t>(indexBuffer.size()) - indexStart;
}
};
/*
* VulkanExample
*/
class VulkanExample : public VulkanExampleBase
{
public:
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
std::vector<VulkanGear*> gears;
std::vector<Gear> gears{};
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
// Even though this sample renders multiple objects (gears), we only use single buffers
// This is a best practices and Vulkan applications should keep the number of memory allocations as small as possible
// Having as little buffers as possible also reduces the number of buffer binds
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
struct UniformData
{
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos;
// The model matrix is used to rotate a given gear, so we have one mat4 per gear
glm::mat4 model[numGears];
} uniformData;
vks::Buffer uniformBuffer;
VulkanExample() : VulkanExampleBase()
{
title = "Vulkan gears";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 2.5f, -16.0f));
camera.setRotation(glm::vec3(-23.75f, 41.25f, 21.0f));
camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.001f, 256.0f);
timerSpeed *= 0.25f;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
for (auto& gear : gears)
{
delete(gear);
if (device) {
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
indexBuffer.destroy();
vertexBuffer.destroy();
uniformBuffer.destroy();
}
}
void prepareGears()
{
// Set up three differntly shaped and colored gears
std::vector<GearDefinition> gearDefinitions(3);
// Large red gear
gearDefinitions[0].innerRadius = 1.0f;
gearDefinitions[0].outerRadius = 4.0f;
gearDefinitions[0].width = 1.0f;
gearDefinitions[0].numTeeth = 20;
gearDefinitions[0].toothDepth = 0.7f;
gearDefinitions[0].color = { 1.0f, 0.0f, 0.0f };
gearDefinitions[0].pos = { -3.0f, 0.0f, 0.0f };
gearDefinitions[0].rotSpeed = 1.0f;
gearDefinitions[0].rotOffset = 0.0f;
// Medium sized green gear
gearDefinitions[1].innerRadius = 0.5f;
gearDefinitions[1].outerRadius = 2.0f;
gearDefinitions[1].width = 2.0f;
gearDefinitions[1].numTeeth = 10;
gearDefinitions[1].toothDepth = 0.7f;
gearDefinitions[1].color = { 0.0f, 1.0f, 0.2f };
gearDefinitions[1].pos = { 3.1f, 0.0f, 0.0f };
gearDefinitions[1].rotSpeed = -2.0f;
gearDefinitions[1].rotOffset = -9.0f;
// Small blue gear
gearDefinitions[2].innerRadius = 1.3f;
gearDefinitions[2].outerRadius = 2.0f;
gearDefinitions[2].width = 0.5f;
gearDefinitions[2].numTeeth = 10;
gearDefinitions[2].toothDepth = 0.7f;
gearDefinitions[2].color = { 0.0f, 0.0f, 1.0f };
gearDefinitions[2].pos = { -3.1f, -6.2f, 0.0f };
gearDefinitions[2].rotSpeed = -2.0f;
gearDefinitions[2].rotOffset = -30.0f;
// We'll be using a single vertex and a single index buffer for all the gears, no matter their number
// This is a Vulkan best practice as it keeps the no. of memory/buffer allocations low
// Vulkan offers all the tools to easily index into those buffers at a later point (see the buildCommandBuffers function)
std::vector<Gear::Vertex> vertices{};
std::vector<uint32_t> indices{};
// Fills the vertex and index buffers for each of the gear
gears.resize(gearDefinitions.size());
for (int32_t i = 0; i < gears.size(); i++) {
gears[i].generate(gearDefinitions[i], vertices, indices);
}
// Create buffers and stage to device for performances
size_t vertexBufferSize = vertices.size() * sizeof(Gear::Vertex);
size_t indexBufferSize = indices.size() * sizeof(uint32_t);
vks::Buffer vertexStaging, indexStaging;
// Temorary Staging buffers from vertex and index data
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &vertexStaging, vertexBufferSize, vertices.data());
vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &indexStaging, indexBufferSize, indices.data());
// Device local buffers to where our staging buffers will be copied to
vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertexBufferSize);
vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indexBufferSize);
// Copy host (staging) to device
VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, vertexBuffer.buffer, 1, &copyRegion);
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(copyCmd, indexStaging.buffer, indexBuffer.buffer, 1, &copyRegion);
vulkanDevice->flushCommandBuffer(copyCmd, queue, true);
vertexStaging.destroy();
indexStaging.destroy();
}
void setupDescriptors()
{
// We use a single descriptor set for the uniform data that contains both global matrices as well as per-gear model matrices
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, static_cast<uint32_t>(gears.size()));
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor);
vkUpdateDescriptorSets(vulkanDevice->logicalDevice, 1, &writeDescriptorSet, 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "gears/gears.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "gears/gears.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Vertex bindings and attributes to match the vertex buffers storing the vertices for the gears
VkVertexInputBindingDescription vertexInputBinding = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Gear::Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Gear::Vertex, position)), // Location 0 : Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Gear::Vertex, normal)), // Location 1 : Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Gear::Vertex, color)), // Location 2 : Color
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &vertexInputStateCI;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
@ -83,9 +444,16 @@ public:
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
for (auto& gear : gears)
{
gear->draw(drawCmdBuffers[i], pipelineLayout);
// Vertices, indices and uniform data for all gears are stored in single buffers, so we only need to bind one buffer of each type and then index/offset into that for each separate gear
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
for (auto j = 0; j < numGears; j++) {
// We use the instance index (last argument) to pass the index of the triangle to the shader
// With this we can index into the model matrices array of the uniform buffer like this (see gears.vert):
// ubo.model[gl_InstanceIndex];
vkCmdDrawIndexed(drawCmdBuffers[i], gears[j].indexCount, 1, gears[j].indexStart, 0, j);
}
drawUI(drawCmdBuffers[i]);
@ -96,194 +464,43 @@ public:
}
}
void prepareVertices()
void prepareUniformBuffers()
{
// Gear definitions
std::vector<float> innerRadiuses = { 1.0f, 0.5f, 1.3f };
std::vector<float> outerRadiuses = { 4.0f, 2.0f, 2.0f };
std::vector<float> widths = { 1.0f, 2.0f, 0.5f };
std::vector<int32_t> toothCount = { 20, 10, 10 };
std::vector<float> toothDepth = { 0.7f, 0.7f, 0.7f };
std::vector<glm::vec3> colors = {
glm::vec3(1.0f, 0.0f, 0.0f),
glm::vec3(0.0f, 1.0f, 0.2f),
glm::vec3(0.0f, 0.0f, 1.0f)
};
std::vector<glm::vec3> positions = {
glm::vec3(-3.0, 0.0, 0.0),
glm::vec3(3.1, 0.0, 0.0),
glm::vec3(-3.1, -6.2, 0.0)
};
std::vector<float> rotationSpeeds = { 1.0f, -2.0f, -2.0f };
std::vector<float> rotationOffsets = { 0.0f, -9.0f, -30.0f };
gears.resize(positions.size());
for (int32_t i = 0; i < gears.size(); ++i)
{
GearInfo gearInfo = {};
gearInfo.innerRadius = innerRadiuses[i];
gearInfo.outerRadius = outerRadiuses[i];
gearInfo.width = widths[i];
gearInfo.numTeeth = toothCount[i];
gearInfo.toothDepth = toothDepth[i];
gearInfo.color = colors[i];
gearInfo.pos = positions[i];
gearInfo.rotSpeed = rotationSpeeds[i];
gearInfo.rotOffset = rotationOffsets[i];
gears[i] = new VulkanGear(vulkanDevice);
gears[i]->generate(&gearInfo, queue);
}
// Binding and attribute descriptions are shared across all gears
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
0,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
0,
0,
VK_FORMAT_R32G32B32_SFLOAT,
0);
// Location 1 : Normal
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
0,
1,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 3);
// Location 2 : Color
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
0,
2,
VK_FORMAT_R32G32B32_SFLOAT,
sizeof(float) * 6);
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// One UBO for each gear
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, static_cast<uint32_t>(gears.size()));
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
for (auto& gear : gears)
{
gear->setupDescriptorSet(descriptorPool, descriptorSetLayout);
}
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_BACK_BIT,
VK_FRONT_FACE_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
shaderStages[0] = loadShader(getShadersPath() + "gears/gears.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "gears/gears.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
// Create the vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData)));
// Map persistent
VK_CHECK_RESULT(uniformBuffer.map());
}
void updateUniformBuffers()
{
for (auto& gear : gears)
{
gear->updateUniformBuffer(camera.matrices.perspective, camera.matrices.view, timer * 360.0f);
float degree = timer * 360.0f;
// Camera specific global matrices
uniformData.projection = camera.matrices.perspective;
uniformData.view = camera.matrices.view;
uniformData.lightPos = glm::vec4(0.0f, 0.0f, 2.5f, 1.0f);
// Update the model matrix for each gear that contains it's position and rotation
for (auto i = 0; i < numGears; i++) {
Gear gear = gears[i];
uniformData.model[i] = glm::mat4(1.0f);
uniformData.model[i] = glm::translate(uniformData.model[i], gear.pos);
uniformData.model[i] = glm::rotate(uniformData.model[i], glm::radians((gear.rotSpeed * degree) + gear.rotOffset), glm::vec3(0.0f, 0.0f, 1.0f));
}
memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData));
}
void prepare()
{
VulkanExampleBase::prepare();
prepareGears();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
@ -295,19 +512,6 @@ public:
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
prepareVertices();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
updateUniformBuffers();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
@ -316,10 +520,6 @@ public:
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
};
VULKAN_EXAMPLE_MAIN()