Updated shading rate sample to KHR extension

This commit is contained in:
Sascha Willems 2023-10-13 18:53:51 +02:00
parent 66dce3c991
commit f27a032570
5 changed files with 273 additions and 98 deletions

View file

@ -1,7 +1,7 @@
/*
* Vulkan Example - Variable rate shading
*
* Copyright (C) 2020-2022 by Sascha Willems - www.saschawillems.de
* Copyright (C) 2020-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -19,7 +19,8 @@ VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
camera.setRotationSpeed(0.25f);
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_NV_SHADING_RATE_IMAGE_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME);
}
VulkanExample::~VulkanExample()
@ -40,10 +41,11 @@ void VulkanExample::getEnabledFeatures()
{
enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy;
// POI
enabledPhysicalDeviceShadingRateImageFeaturesNV = {};
enabledPhysicalDeviceShadingRateImageFeaturesNV.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_FEATURES_NV;
enabledPhysicalDeviceShadingRateImageFeaturesNV.shadingRateImage = VK_TRUE;
deviceCreatepNextChain = &enabledPhysicalDeviceShadingRateImageFeaturesNV;
enabledPhysicalDeviceShadingRateImageFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR;
enabledPhysicalDeviceShadingRateImageFeaturesKHR.attachmentFragmentShadingRate = VK_TRUE;
enabledPhysicalDeviceShadingRateImageFeaturesKHR.pipelineFragmentShadingRate = VK_FALSE;
enabledPhysicalDeviceShadingRateImageFeaturesKHR.primitiveFragmentShadingRate = VK_FALSE;
deviceCreatepNextChain = &enabledPhysicalDeviceShadingRateImageFeaturesKHR;
}
/*
@ -60,6 +62,146 @@ void VulkanExample::handleResize()
resized = false;
}
void VulkanExample::setupFrameBuffer()
{
VkImageView attachments[3];
// Depth/Stencil attachment is the same for all frame buffers
attachments[1] = depthStencil.view;
// Fragment shading rate attachment
attachments[2] = shadingRateImage.view;
VkFramebufferCreateInfo frameBufferCreateInfo{};
frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
frameBufferCreateInfo.renderPass = renderPass;
frameBufferCreateInfo.attachmentCount = 3;
frameBufferCreateInfo.pAttachments = attachments;
frameBufferCreateInfo.width = width;
frameBufferCreateInfo.height = height;
frameBufferCreateInfo.layers = 1;
// Create frame buffers for every swap chain image
frameBuffers.resize(swapChain.imageCount);
for (uint32_t i = 0; i < frameBuffers.size(); i++)
{
attachments[0] = swapChain.buffers[i].view;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]));
}
}
void VulkanExample::setupRenderPass()
{
// Note that we need to use ...2KHR types in here, as fragment shading rate requires additional properties and structs to be passed at renderpass creation
if (!vkCreateRenderPass2KHR) {
vkCreateRenderPass2KHR = reinterpret_cast<PFN_vkCreateRenderPass2KHR>(vkGetInstanceProcAddr(instance, "vkCreateRenderPass2KHR"));
}
// Create an image with the shading rates to be used during rendering
prepareShadingRateImage();
std::array<VkAttachmentDescription2KHR, 3> attachments = {};
// Color attachment
attachments[0].sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
attachments[0].format = swapChain.colorFormat;
attachments[0].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// Depth attachment
attachments[1].sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
attachments[1].format = depthFormat;
attachments[1].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
// Fragment shading rate attachment
attachments[2].sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2;
attachments[2].format = VK_FORMAT_R8_UINT;
attachments[2].samples = VK_SAMPLE_COUNT_1_BIT;
attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attachments[2].initialLayout = VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR;
attachments[2].finalLayout = VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR;
VkAttachmentReference2KHR colorReference = {};
colorReference.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2;
colorReference.attachment = 0;
colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorReference.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkAttachmentReference2KHR depthReference = {};
depthReference.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2;
depthReference.attachment = 1;
depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthReference.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
// Setup the attachment reference for the shading rate image attachment in slot 2
VkAttachmentReference2 fragmentShadingRateReference{};
fragmentShadingRateReference.sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2;
fragmentShadingRateReference.attachment = 2;
fragmentShadingRateReference.layout = VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR;
// Setup the attachment info for the shading rate image, which will be added to the sub pass via structure chaining (in pNext)
VkFragmentShadingRateAttachmentInfoKHR fragmentShadingRateAttachmentInfo{};
fragmentShadingRateAttachmentInfo.sType = VK_STRUCTURE_TYPE_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR;
fragmentShadingRateAttachmentInfo.pFragmentShadingRateAttachment = &fragmentShadingRateReference;
fragmentShadingRateAttachmentInfo.shadingRateAttachmentTexelSize.width = physicalDeviceShadingRateImageProperties.maxFragmentShadingRateAttachmentTexelSize.width;
fragmentShadingRateAttachmentInfo.shadingRateAttachmentTexelSize.height = physicalDeviceShadingRateImageProperties.maxFragmentShadingRateAttachmentTexelSize.height;
VkSubpassDescription2KHR subpassDescription = {};
subpassDescription.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2;
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &colorReference;
subpassDescription.pDepthStencilAttachment = &depthReference;
subpassDescription.inputAttachmentCount = 0;
subpassDescription.pInputAttachments = nullptr;
subpassDescription.preserveAttachmentCount = 0;
subpassDescription.pPreserveAttachments = nullptr;
subpassDescription.pResolveAttachments = nullptr;
subpassDescription.pNext = &fragmentShadingRateAttachmentInfo;
// Subpass dependencies for layout transitions
std::array<VkSubpassDependency2KHR, 2> dependencies = {};
dependencies[0].sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo2KHR renderPassCI = {};
renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2;
renderPassCI.attachmentCount = static_cast<uint32_t>(attachments.size());
renderPassCI.pAttachments = attachments.data();
renderPassCI.subpassCount = 1;
renderPassCI.pSubpasses = &subpassDescription;
renderPassCI.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassCI.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass2KHR(device, &renderPassCI, nullptr, &renderPass));
}
void VulkanExample::buildCommandBuffers()
{
if (resized)
@ -67,12 +209,17 @@ void VulkanExample::buildCommandBuffers()
handleResize();
}
// As this is an extension, we need to manually load the extension pointers
if (!vkCmdSetFragmentShadingRateKHR) {
vkCmdSetFragmentShadingRateKHR = reinterpret_cast<PFN_vkCmdSetFragmentShadingRateKHR>(vkGetDeviceProcAddr(device, "vkCmdSetFragmentShadingRateKHR"));
}
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
VkClearValue clearValues[3];
clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };;
clearValues[1].depthStencil = { 1.0f, 0 };
clearValues[2].color = { {0.0f, 0.0f, 0.0f, 0.0f} };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
@ -80,7 +227,7 @@ void VulkanExample::buildCommandBuffers()
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.clearValueCount = 3;
renderPassBeginInfo.pClearValues = clearValues;
const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
@ -95,10 +242,25 @@ void VulkanExample::buildCommandBuffers()
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
// POI: Bind the image that contains the shading rate patterns
if (enableShadingRate) {
vkCmdBindShadingRateImageNV(drawCmdBuffers[i], shadingRateImage.view, VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV);
};
// Set the fragment shading rate state for the current pipeline
VkExtent2D fragmentSize = { 1, 1 };
VkFragmentShadingRateCombinerOpKHR combinerOps[2];
// The combiners determine how the different shading rate values for the pipeline, primitives and attachment are combined
if (enableShadingRate)
{
// If shading rate from attachment is enabled, we set the combiner, so that the values from the attachment are used
// Combiner for pipeline (A) and primitive (B) - Not used in this sample
combinerOps[0] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
// Combiner for pipeline (A) and attachment (B), replace the pipeline default value (fragment_size) with the fragment sizes stored in the attachment
combinerOps[1] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_REPLACE_KHR;
}
else
{
// If shading rate from attachment is disabled, we keep the value set via the dynamic state
combinerOps[0] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
combinerOps[1] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
}
vkCmdSetFragmentShadingRateKHR(drawCmdBuffers[i], &fragmentSize, combinerOps);
// Render the scene
Pipelines& pipelines = enableShadingRate ? shadingRatePipelines : basePipelines;
@ -155,17 +317,38 @@ void VulkanExample::setupDescriptors()
// [POI]
void VulkanExample::prepareShadingRateImage()
{
// As this is an extension, we need to manually load the extension pointers
if (!vkGetPhysicalDeviceFragmentShadingRatesKHR) {
vkGetPhysicalDeviceFragmentShadingRatesKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR>(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFragmentShadingRatesKHR"));
}
// Get properties of this extensions, which also contains texel sizes required to setup the image
physicalDeviceShadingRateImageProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR;
VkPhysicalDeviceProperties2 deviceProperties2{};
deviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
deviceProperties2.pNext = &physicalDeviceShadingRateImageProperties;
vkGetPhysicalDeviceProperties2(physicalDevice, &deviceProperties2);
// We need to check if the requested format for the shading rate attachment supports the required flag
const VkFormat imageFormat = VK_FORMAT_R8_UINT;
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, imageFormat, &formatProperties);
if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR))
{
throw std::runtime_error("Selected shading rate attachment image format does not fragment shading rate");
}
// Shading rate image size depends on shading rate texel size
// For each texel in the target image, there is a corresponding shading texel size width x height block in the shading rate image
VkExtent3D imageExtent{};
imageExtent.width = static_cast<uint32_t>(ceil(width / (float)physicalDeviceShadingRateImagePropertiesNV.shadingRateTexelSize.width));
imageExtent.height = static_cast<uint32_t>(ceil(height / (float)physicalDeviceShadingRateImagePropertiesNV.shadingRateTexelSize.height));
imageExtent.width = static_cast<uint32_t>(ceil(width / (float)physicalDeviceShadingRateImageProperties.maxFragmentShadingRateAttachmentTexelSize.width));
imageExtent.height = static_cast<uint32_t>(ceil(height / (float)physicalDeviceShadingRateImageProperties.maxFragmentShadingRateAttachmentTexelSize.height));
imageExtent.depth = 1;
VkImageCreateInfo imageCI{};
imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCI.imageType = VK_IMAGE_TYPE_2D;
imageCI.format = VK_FORMAT_R8_UINT;
imageCI.format = imageFormat;
imageCI.extent = imageExtent;
imageCI.mipLevels = 1;
imageCI.arrayLayers = 1;
@ -173,13 +356,11 @@ void VulkanExample::prepareShadingRateImage()
imageCI.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCI.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCI.usage = VK_IMAGE_USAGE_SHADING_RATE_IMAGE_BIT_NV | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageCI.usage = VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &shadingRateImage.image));
VkMemoryRequirements memReqs{};
vkGetImageMemoryRequirements(device, shadingRateImage.image, &memReqs);
VkDeviceSize bufferSize = imageExtent.width * imageExtent.height * sizeof(uint8_t);
VkMemoryAllocateInfo memAllloc{};
memAllloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllloc.allocationSize = memReqs.size;
@ -199,26 +380,47 @@ void VulkanExample::prepareShadingRateImage()
imageViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VK_CHECK_RESULT(vkCreateImageView(device, &imageViewCI, nullptr, &shadingRateImage.view));
// Populate with lowest possible shading rate pattern
uint8_t val = VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X4_PIXELS_NV;
// The shading rates are stored in a buffer that'll be copied to the shading rate image
VkDeviceSize bufferSize = imageExtent.width * imageExtent.height * sizeof(uint8_t);
// Fragment sizes are encoded in a single texel as follows:
// size(w) = 2^((texel/4) & 3)
// size(h)h = 2^(texel & 3)
// Populate it with the lowest possible shading rate
uint8_t val = (4 >> 1) | (4 << 1);
uint8_t* shadingRatePatternData = new uint8_t[bufferSize];
memset(shadingRatePatternData, val, bufferSize);
// Create a circular pattern with decreasing sampling rates outwards (max. range, pattern)
std::map<float, VkShadingRatePaletteEntryNV> patternLookup = {
{ 8.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_PIXEL_NV },
{ 12.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X1_PIXELS_NV },
{ 16.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_1X2_PIXELS_NV },
{ 18.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X2_PIXELS_NV },
{ 20.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X2_PIXELS_NV },
{ 24.0f, VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X4_PIXELS_NV }
};
// Get a list of available shading rate patterns
std::vector<VkPhysicalDeviceFragmentShadingRateKHR> fragmentShadingRates{};
uint32_t fragmentShadingRatesCount = 0;
vkGetPhysicalDeviceFragmentShadingRatesKHR(physicalDevice, &fragmentShadingRatesCount, nullptr);
if (fragmentShadingRatesCount > 0) {
fragmentShadingRates.resize(fragmentShadingRatesCount);
for (VkPhysicalDeviceFragmentShadingRateKHR& fragmentShadingRate : fragmentShadingRates) {
// In addition to the value, we also need to set the sType for each rate to comply with the spec or else the call to vkGetPhysicalDeviceFragmentShadingRatesKHR will result in undefined behaviour
fragmentShadingRate.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_KHR;
}
vkGetPhysicalDeviceFragmentShadingRatesKHR(physicalDevice, &fragmentShadingRatesCount, fragmentShadingRates.data());
}
// Create a circular pattern from the available list of fragment shading rates with decreasing sampling rates outwards (max. range, pattern)
// Shading rates returned by vkGetPhysicalDeviceFragmentShadingRatesKHR are ordered from largest to smallest
std::map<float, uint8_t> patternLookup{};
float range = 25.0f / static_cast<uint32_t>(fragmentShadingRates.size());
float currentRange = 8.0f;
for (size_t i = fragmentShadingRates.size() - 1; i > 0; i--) {
uint32_t rate_v = fragmentShadingRates[i].fragmentSize.width == 1 ? 0 : (fragmentShadingRates[i].fragmentSize.width >> 1);
uint32_t rate_h = fragmentShadingRates[i].fragmentSize.height == 1 ? 0 : (fragmentShadingRates[i].fragmentSize.height << 1);
patternLookup[currentRange] = rate_v | rate_h;
currentRange += range;
}
uint8_t* ptrData = shadingRatePatternData;
for (uint32_t y = 0; y < imageExtent.height; y++) {
for (uint32_t x = 0; x < imageExtent.width; x++) {
const float deltaX = (float)imageExtent.width / 2.0f - (float)x;
const float deltaY = ((float)imageExtent.height / 2.0f - (float)y) * ((float)width / (float)height);
const float deltaX = (static_cast<float>(imageExtent.width) / 2.0f - static_cast<float>(x)) / imageExtent.width * 100.0f;
const float deltaY = (static_cast<float>(imageExtent.height) / 2.0f - static_cast<float>(y)) / imageExtent.height * 100.0f;
const float dist = std::sqrt(deltaX * deltaX + deltaY * deltaY);
for (auto pattern : patternLookup) {
if (dist < pattern.first) {
@ -230,6 +432,8 @@ void VulkanExample::prepareShadingRateImage()
}
}
// Copy the shading rate pattern to the shading rate image
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
@ -283,7 +487,7 @@ void VulkanExample::prepareShadingRateImage()
VkImageMemoryBarrier imageMemoryBarrier{};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADING_RATE_OPTIMAL_NV;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_FRAGMENT_SHADING_RATE_ATTACHMENT_OPTIMAL_KHR;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.image = shadingRateImage.image;
@ -305,7 +509,7 @@ void VulkanExample::preparePipelines()
VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
const std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR };
VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast<uint32_t>(dynamicStateEnables.size()), 0);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
@ -346,31 +550,6 @@ void VulkanExample::preparePipelines()
rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT;
specializationData.alphaMask = false;
// Create pipeline with shading rate enabled
// [POI] Possible per-Viewport shading rate palette entries
const std::vector<VkShadingRatePaletteEntryNV> shadingRatePaletteEntries = {
VK_SHADING_RATE_PALETTE_ENTRY_NO_INVOCATIONS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_16_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_8_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_4_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_2_INVOCATIONS_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_PIXEL_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X1_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_1X2_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X2_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X2_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_2X4_PIXELS_NV,
VK_SHADING_RATE_PALETTE_ENTRY_1_INVOCATION_PER_4X4_PIXELS_NV,
};
VkShadingRatePaletteNV shadingRatePalette{};
shadingRatePalette.shadingRatePaletteEntryCount = static_cast<uint32_t>(shadingRatePaletteEntries.size());
shadingRatePalette.pShadingRatePaletteEntries = shadingRatePaletteEntries.data();
VkPipelineViewportShadingRateImageStateCreateInfoNV pipelineViewportShadingRateImageStateCI{};
pipelineViewportShadingRateImageStateCI.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_SHADING_RATE_IMAGE_STATE_CREATE_INFO_NV;
pipelineViewportShadingRateImageStateCI.shadingRateImageEnable = VK_TRUE;
pipelineViewportShadingRateImageStateCI.viewportCount = 1;
pipelineViewportShadingRateImageStateCI.pShadingRatePalettes = &shadingRatePalette;
viewportStateCI.pNext = &pipelineViewportShadingRateImageStateCI;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &shadingRatePipelines.opaque));
specializationData.alphaMask = true;
rasterizationStateCI.cullMode = VK_CULL_MODE_NONE;
@ -401,16 +580,6 @@ void VulkanExample::prepare()
{
VulkanExampleBase::prepare();
loadAssets();
// [POI]
vkCmdBindShadingRateImageNV = reinterpret_cast<PFN_vkCmdBindShadingRateImageNV>(vkGetDeviceProcAddr(device, "vkCmdBindShadingRateImageNV"));
physicalDeviceShadingRateImagePropertiesNV.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADING_RATE_IMAGE_PROPERTIES_NV;
VkPhysicalDeviceProperties2 deviceProperties2{};
deviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
deviceProperties2.pNext = &physicalDeviceShadingRateImagePropertiesNV;
vkGetPhysicalDeviceProperties2(physicalDevice, &deviceProperties2);
prepareShadingRateImage();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();

View file

@ -1,7 +1,7 @@
/*
* Vulkan Example - Variable rate shading
*
* Copyright (C) 2020 by Sascha Willems - www.saschawillems.de
* Copyright (C) 2020-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -49,9 +49,12 @@ public:
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VkPhysicalDeviceShadingRateImagePropertiesNV physicalDeviceShadingRateImagePropertiesNV{};
VkPhysicalDeviceShadingRateImageFeaturesNV enabledPhysicalDeviceShadingRateImageFeaturesNV{};
PFN_vkCmdBindShadingRateImageNV vkCmdBindShadingRateImageNV;
VkPhysicalDeviceFragmentShadingRatePropertiesKHR physicalDeviceShadingRateImageProperties{};
VkPhysicalDeviceFragmentShadingRateFeaturesKHR enabledPhysicalDeviceShadingRateImageFeaturesKHR{};
PFN_vkGetPhysicalDeviceFragmentShadingRatesKHR vkGetPhysicalDeviceFragmentShadingRatesKHR{ nullptr };
PFN_vkCmdSetFragmentShadingRateKHR vkCmdSetFragmentShadingRateKHR{ nullptr };
PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR{ nullptr };
VulkanExample();
~VulkanExample();
@ -66,6 +69,8 @@ public:
void prepareUniformBuffers();
void updateUniformBuffers();
void prepare();
void setupFrameBuffer() override;
void setupRenderPass() override;
virtual void render();
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
};

View file

@ -1,6 +1,6 @@
#version 450
#extension GL_NV_shading_rate_image : require
#extension GL_EXT_fragment_shading_rate : require
layout (set = 1, binding = 0) uniform sampler2D samplerColorMap;
layout (set = 1, binding = 1) uniform sampler2D samplerNormalMap;
@ -52,33 +52,34 @@ void main()
outFragColor = vec4(diffuse * color.rgb + specular, color.a);
if (uboScene.colorShadingRates == 1) {
if (gl_FragmentSizeNV.x == 1 && gl_FragmentSizeNV.y == 1) {
outFragColor.rgb *= vec3(0.0, 0.8, 0.4);
return;
int v = 1;
int h = 1;
if ((gl_ShadingRateEXT & gl_ShadingRateFlag2VerticalPixelsEXT) == gl_ShadingRateFlag2VerticalPixelsEXT) {
v = 2;
}
if (gl_FragmentSizeNV.x == 2 && gl_FragmentSizeNV.y == 1) {
outFragColor.rgb *= vec3(0.2, 0.6, 1.0);
return;
if ((gl_ShadingRateEXT & gl_ShadingRateFlag4VerticalPixelsEXT) == gl_ShadingRateFlag4VerticalPixelsEXT) {
v = 4;
}
if (gl_FragmentSizeNV.x == 1 && gl_FragmentSizeNV.y == 2) {
outFragColor.rgb *= vec3(0.0, 0.4, 0.8);
return;
if ((gl_ShadingRateEXT & gl_ShadingRateFlag2HorizontalPixelsEXT) == gl_ShadingRateFlag2HorizontalPixelsEXT) {
h = 2;
}
if (gl_FragmentSizeNV.x == 2 && gl_FragmentSizeNV.y == 2) {
outFragColor.rgb *= vec3(1.0, 1.0, 0.2);
return;
}
if (gl_FragmentSizeNV.x == 4 && gl_FragmentSizeNV.y == 2) {
outFragColor.rgb *= vec3(0.8, 0.8, 0.0);
return;
}
if (gl_FragmentSizeNV.x == 2 && gl_FragmentSizeNV.y == 4) {
outFragColor.rgb *= vec3(1.0, 0.4, 0.2);
return;
}
if (gl_FragmentSizeNV.x == 4 && gl_FragmentSizeNV.y == 4) {
outFragColor.rgb *= vec3(0.8, 0.0, 0.0);
return;
if ((gl_ShadingRateEXT & gl_ShadingRateFlag4HorizontalPixelsEXT) == gl_ShadingRateFlag4HorizontalPixelsEXT) {
h = 4;
}
if (v == 1 && h == 1) { outFragColor *= vec4(0.0, 0.8, 0.4, 1.0); return; }
if (v == 2 && h == 1) { outFragColor *= vec4(0.2, 0.6, 1.0, 1.0); return; }
if (v == 1 && h == 2) { outFragColor *= vec4(0.0, 0.4, 0.8, 1.0); return; }
if (v == 2 && h == 2) { outFragColor *= vec4(1.0, 1.0, 0.2, 1.0); return; }
if (v == 4 && h == 2) { outFragColor *= vec4(0.8, 0.8, 0.0, 1.0); return; }
if (v == 2 && h == 4) { outFragColor *= vec4(1.0, 0.4, 0.2, 1.0); return; }
outFragColor *= vec4(0.0, 0.8, 0.4, 1.0);
}
}