Fold layout transitions into subpass (Refs #155), refactoring of offscreen render pass

This commit is contained in:
saschawillems 2016-08-13 19:31:41 +02:00
parent 78736527ee
commit f60e5d25fd

View file

@ -127,18 +127,17 @@ public:
VkDeviceMemory mem;
VkImageView view;
};
struct FrameBuffer {
struct OffscreenPass {
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
VkRenderPass renderPass;
VkSampler depthSampler;
} offScreenFrameBuf;
VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE;
// Semaphore used to synchronize offscreen rendering before using it's texture target for sampling
VkSemaphore offscreenSemaphore = VK_NULL_HANDLE;
VkDescriptorImageInfo descriptor;
VkCommandBuffer commandBuffer = VK_NULL_HANDLE;
// Semaphore used to synchronize between offscreen and final scene render pass
VkSemaphore semaphore = VK_NULL_HANDLE;
} offscreenPass;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
@ -155,21 +154,21 @@ public:
// Note : Inherited destructor cleans up resources stored in base class
// Frame buffer
vkDestroySampler(device, offScreenFrameBuf.depthSampler, nullptr);
vkDestroySampler(device, offscreenPass.depthSampler, nullptr);
// Color attachment
vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr);
vkDestroyImageView(device, offscreenPass.color.view, nullptr);
vkDestroyImage(device, offscreenPass.color.image, nullptr);
vkFreeMemory(device, offscreenPass.color.mem, nullptr);
// Depth attachment
vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr);
vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr);
vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr);
vkDestroyImageView(device, offscreenPass.depth.view, nullptr);
vkDestroyImage(device, offscreenPass.depth.image, nullptr);
vkFreeMemory(device, offscreenPass.depth.mem, nullptr);
vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr);
vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr);
vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr);
vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr);
vkDestroyPipeline(device, pipelines.quad, nullptr);
vkDestroyPipeline(device, pipelines.offscreen, nullptr);
@ -189,42 +188,34 @@ public:
vkTools::destroyUniformData(device, &uniformData.offscreen);
vkTools::destroyUniformData(device, &uniformData.scene);
vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer);
vkDestroySemaphore(device, offscreenSemaphore, nullptr);
vkFreeCommandBuffers(device, cmdPool, 1, &offscreenPass.commandBuffer);
vkDestroySemaphore(device, offscreenPass.semaphore, nullptr);
}
// Set up a separate render pass for the offscreen frame buffer
// This is necessary as the offscreen frame buffer attachments
// use formats different to the ones from the visible frame buffer
// and at least the depth one may not be compatible
// This is necessary as the offscreen frame buffer attachments use formats different to those from the example render pass
void prepareOffscreenRenderpass()
{
// todo: no color attachment required
VkAttachmentDescription attDesc[2];
attDesc[0].format = FB_COLOR_FORMAT;
attDesc[0].samples = VK_SAMPLE_COUNT_1_BIT;
attDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
// We only need depth information for shadow mapping
// So we don't need to store the color information
// after the render pass has finished
attDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; // We won't sample from color, so throw away
attDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attDesc[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attDesc[0].flags = VK_FLAGS_NONE;
attDesc[1].format = DEPTH_FORMAT;
attDesc[1].samples = VK_SAMPLE_COUNT_1_BIT;
attDesc[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
// Since we need to copy the depth attachment contents to our texture
// used for shadow mapping we must use STORE_OP_STORE to make sure that
// the depth attachment contents are preserved after rendering to it
// has finished
attDesc[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attDesc[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; // We will read from depth, so it's important to store the depth attachment results
attDesc[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attDesc[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
attDesc[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attDesc[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attDesc[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attDesc[1].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
attDesc[1].flags = VK_FLAGS_NONE;
VkAttachmentReference colorReference = {};
@ -241,23 +232,42 @@ public:
subpass.pColorAttachments = &colorReference;
subpass.pDepthStencilAttachment = &depthReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> dependencies;
dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
dependencies[0].dstSubpass = 0;
dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
dependencies[1].srcSubpass = 0;
dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
VkRenderPassCreateInfo renderPassCreateInfo = vkTools::initializers::renderPassCreateInfo();
renderPassCreateInfo.attachmentCount = 2;
renderPassCreateInfo.pAttachments = attDesc;
renderPassCreateInfo.subpassCount = 1;
renderPassCreateInfo.pSubpasses = &subpass;
renderPassCreateInfo.dependencyCount = static_cast<uint32_t>(dependencies.size());
renderPassCreateInfo.pDependencies = dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offScreenFrameBuf.renderPass));
VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass));
}
// Setup the offscreen framebuffer for rendering the scene from
// light's point-of-view to
// The depth attachment of this framebuffer will then be used
// to sample frame in the fragment shader of the shadowing pass
// Setup the offscreen framebuffer for rendering the scene from light's point-of-view to
// The depth attachment of this framebuffer will then be used to sample from in the fragment shader of the shadowing pass
void prepareOffscreenFramebuffer()
{
offScreenFrameBuf.width = SHADOWMAP_DIM;
offScreenFrameBuf.height = SHADOWMAP_DIM;
offscreenPass.width = SHADOWMAP_DIM;
offscreenPass.height = SHADOWMAP_DIM;
VkFormat fbColorFormat = FB_COLOR_FORMAT;
@ -265,8 +275,8 @@ public:
VkImageCreateInfo image = vkTools::initializers::imageCreateInfo();
image.imageType = VK_IMAGE_TYPE_2D;
image.format = fbColorFormat;
image.extent.width = offScreenFrameBuf.width;
image.extent.height = offScreenFrameBuf.height;
image.extent.width = offscreenPass.width;
image.extent.height = offscreenPass.height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arrayLayers = 1;
@ -287,25 +297,16 @@ public:
colorImageView.subresourceRange.levelCount = 1;
colorImageView.subresourceRange.baseArrayLayer = 0;
colorImageView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image));
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.color.image));
vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs);
vkGetImageMemoryRequirements(device, offscreenPass.color.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0));
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.color.image, offscreenPass.color.mem, 0));
VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
vkTools::setImageLayout(
layoutCmd,
offScreenFrameBuf.color.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
colorImageView.image = offScreenFrameBuf.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view));
colorImageView.image = offscreenPass.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreenPass.color.view));
// Depth stencil attachment
image.format = DEPTH_FORMAT;
@ -321,27 +322,16 @@ public:
depthStencilView.subresourceRange.levelCount = 1;
depthStencilView.subresourceRange.baseArrayLayer = 0;
depthStencilView.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image));
VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image));
vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs);
vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs);
memAlloc.allocationSize = memReqs.size;
memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0));
VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0));
// Set the initial layout to shader read instead of attachment
// This is done as the render loop does the actualy image layout transitions
vkTools::setImageLayout(
layoutCmd,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true);
depthStencilView.image = offScreenFrameBuf.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view));
depthStencilView.image = offscreenPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view));
// Create sampler to sample from to depth attachment
// Used to sample in the fragment shader for shadowed rendering
@ -357,36 +347,38 @@ public:
sampler.minLod = 0.0f;
sampler.maxLod = 1.0f;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.depthSampler));
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreenPass.depthSampler));
VkImageView attachments[2];
attachments[0] = offScreenFrameBuf.color.view;
attachments[1] = offScreenFrameBuf.depth.view;
attachments[0] = offscreenPass.color.view;
attachments[1] = offscreenPass.depth.view;
prepareOffscreenRenderpass();
// Create frame buffer
VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo();
fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass;
fbufCreateInfo.renderPass = offscreenPass.renderPass;
fbufCreateInfo.attachmentCount = 2;
fbufCreateInfo.pAttachments = attachments;
fbufCreateInfo.width = offScreenFrameBuf.width;
fbufCreateInfo.height = offScreenFrameBuf.height;
fbufCreateInfo.width = offscreenPass.width;
fbufCreateInfo.height = offscreenPass.height;
fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer));
VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer));
}
void buildOffscreenCommandBuffer()
{
if (offScreenCmdBuffer == VK_NULL_HANDLE)
if (offscreenPass.commandBuffer == VK_NULL_HANDLE)
{
offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
offscreenPass.commandBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false);
}
if (offscreenPass.semaphore == VK_NULL_HANDLE)
{
// Create a semaphore used to synchronize offscreen rendering and usage
VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo();
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore));
VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenPass.semaphore));
}
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
@ -395,60 +387,44 @@ public:
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass;
renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer;
renderPassBeginInfo.renderPass = offscreenPass.renderPass;
renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width;
renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height;
renderPassBeginInfo.renderArea.extent.width = offscreenPass.width;
renderPassBeginInfo.renderArea.extent.height = offscreenPass.height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo));
VK_CHECK_RESULT(vkBeginCommandBuffer(offscreenPass.commandBuffer, &cmdBufInfo));
// Change back layout of the depth attachment after sampling in the fragment shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
VkViewport viewport = vkTools::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f);
vkCmdSetViewport(offscreenPass.commandBuffer, 0, 1, &viewport);
VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f);
vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport);
VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0);
vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor);
VkRect2D scissor = vkTools::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0);
vkCmdSetScissor(offscreenPass.commandBuffer, 0, 1, &scissor);
// Set depth bias (aka "Polygon offset")
// Required to avoid shadow mapping artefacts
vkCmdSetDepthBias(
offScreenCmdBuffer,
offscreenPass.commandBuffer,
depthBiasConstant,
0.0f,
depthBiasSlope);
vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBeginRenderPass(offscreenPass.commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
vkCmdBindPipeline(offscreenPass.commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen);
vkCmdBindDescriptorSets(offscreenPass.commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offScreenCmdBuffer, meshes.scene.indexCount, 1, 0, 0, 0);
vkCmdBindVertexBuffers(offscreenPass.commandBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets);
vkCmdBindIndexBuffer(offscreenPass.commandBuffer, meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(offscreenPass.commandBuffer, meshes.scene.indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(offScreenCmdBuffer);
vkCmdEndRenderPass(offscreenPass.commandBuffer);
// Change layout of the depth attachment for sampling in the fragment shader
vkTools::setImageLayout(
offScreenCmdBuffer,
offScreenFrameBuf.depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer));
VK_CHECK_RESULT(vkEndCommandBuffer(offscreenPass.commandBuffer));
}
void buildCommandBuffers()
@ -669,8 +645,8 @@ public:
// Image descriptor for the shadow map attachment
VkDescriptorImageInfo texDescriptor =
vkTools::initializers::descriptorImageInfo(
offScreenFrameBuf.depthSampler,
offScreenFrameBuf.depth.view,
offscreenPass.depthSampler,
offscreenPass.depth.view,
VK_IMAGE_LAYOUT_GENERAL);
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
@ -709,8 +685,8 @@ public:
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene));
// Image descriptor for the shadow map attachment
texDescriptor.sampler = offScreenFrameBuf.depthSampler;
texDescriptor.imageView = offScreenFrameBuf.depth.view;
texDescriptor.sampler = offscreenPass.depthSampler;
texDescriptor.imageView = offscreenPass.depth.view;
std::vector<VkWriteDescriptorSet> sceneDescriptorSets =
{
@ -828,7 +804,7 @@ public:
0);
pipelineCreateInfo.layout = pipelineLayouts.offscreen;
pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass;
pipelineCreateInfo.renderPass = offscreenPass.renderPass;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen));
}
@ -845,7 +821,7 @@ public:
&uniformDataVS.memory,
&uniformDataVS.descriptor);
// Offsvreen vertex shader uniform buffer block
// Offscreen vertex shader uniform buffer block
createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
@ -936,27 +912,25 @@ public:
{
VulkanExampleBase::prepareFrame();
// The scene render command buffer has to wait for the offscreen
// rendering (and transfer) to be finished before using
// the shadow map, so we need to synchronize
// We use an additional semaphore for this
// The scene render command buffer has to wait for the offscreen rendering (and transfer) to be finished before using the shadow map
// Therefore we synchronize using an additional semaphore
// Offscreen rendering
// Wait for swap chain presentation to finish
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Signal ready with offscreen semaphore
submitInfo.pSignalSemaphores = &offscreenSemaphore;
submitInfo.pSignalSemaphores = &offscreenPass.semaphore;
// Submit work
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &offScreenCmdBuffer;
submitInfo.pCommandBuffers = &offscreenPass.commandBuffer;
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
// Scene rendering
// Wait for offscreen semaphore
submitInfo.pWaitSemaphores = &offscreenSemaphore;
submitInfo.pWaitSemaphores = &offscreenPass.semaphore;;
// Signal ready with render complete semaphpre
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
@ -1043,63 +1017,4 @@ public:
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}
VULKAN_EXAMPLE_MAIN()