Mip map loading for 2D textures (optimal tiling)

This commit is contained in:
saschawillems 2016-03-05 00:40:02 +01:00
parent 211d17cbd9
commit fb3d6ef847

View file

@ -1,9 +1,7 @@
/*
* Simple texture loader for Vulkan
* Texture loader for Vulkan
*
* Note : No mip maps (yet), only uses optimal tiling (unless linear is forced)
*
* Copyright (C) 2015 by Sascha Willems - www.saschawillems.de
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
@ -68,6 +66,7 @@ namespace vkTools
texture->width = (uint32_t)tex2D[0].dimensions().x;
texture->height = (uint32_t)tex2D[0].dimensions().y;
texture->mipLevels = tex2D.levels();
VkResult err;
@ -80,17 +79,9 @@ namespace vkTools
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
VkBool32 useStaging = !forceLinear;
// Only use linear tiling if forced
if (forceLinear)
{
useStaging = formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT;
}
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.pNext = NULL;
VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
@ -100,75 +91,72 @@ namespace vkTools
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.flags = 0;
VkMemoryAllocateInfo memAllocInfo = {};
memAllocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
memAllocInfo.pNext = NULL;
memAllocInfo.allocationSize = 0;
memAllocInfo.memoryTypeIndex = 0;
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Create base image, if linear texturing is forced
// this can directly be used
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &(mappableMemory));
// Use a separate command buffer for texture loading
VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo();
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subRes.mipLevel = 0;
subRes.arrayLayer = 0;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
if (useStaging)
{
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
// Load all available mip levels into linear textures
// and copy to optimal tiling target
struct MipLevel {
VkImage image;
VkDeviceMemory memory;
};
std::vector<MipLevel> mipLevels;
mipLevels.resize(texture->mipLevels);
err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo);
assert(!err);
// Copy mip levels
for (uint32_t level = 0; level < texture->mipLevels; ++level)
{
imageCreateInfo.extent.width = tex2D[level].dimensions().x;
imageCreateInfo.extent.height = tex2D[level].dimensions().y;
imageCreateInfo.extent.depth = 1;
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image);
assert(!err);
vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory);
assert(!err);
err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0);
assert(!err);
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout);
assert(!err);
err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data);
assert(!err);
memcpy(data, tex2D[level].data(), tex2D[level].size());
vkUnmapMemory(device, mipLevels[level].memory);
// Image barrier for linear image (base)
// Linear image will be used as a source for the copy
setImageLayout(
cmdBuffer,
mipLevels[level].image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
}
// Setup texture as blit target with optimal tiling
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.mipLevels = texture->mipLevels;
imageCreateInfo.extent = { texture->width, texture->height, 1 };
err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture->image);
assert(!err);
@ -177,66 +165,161 @@ namespace vkTools
memAllocInfo.allocationSize = memReqs.size;
// Get device only memory type
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate device memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture->deviceMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, texture->image, texture->deviceMemory, 0);
assert(!err);
// Image barrier for linear image (base)
// Linear image will be used as a source for the blit
setImageLayout(cmdBuffer,
mappableImage,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
// Image barrier for optimal image (target)
// Optimal image will be used as a target for the blit
setImageLayout(cmdBuffer,
// Optimal image will be used as destination for the copy
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
// Copy region for image blit
VkImageCopy copyRegion = {};
// Copy mip levels one by one
for (uint32_t level = 0; level < texture->mipLevels; ++level)
{
// Copy region for image blit
VkImageCopy copyRegion = {};
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.srcSubresource.baseArrayLayer = 0;
copyRegion.srcSubresource.mipLevel = 0;
copyRegion.srcSubresource.layerCount = 1;
copyRegion.srcOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
copyRegion.dstSubresource.mipLevel = 0;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copyRegion.dstSubresource.baseArrayLayer = 0;
// Set mip level to copy the linear image to
copyRegion.dstSubresource.mipLevel = level;
copyRegion.dstSubresource.layerCount = 1;
copyRegion.dstOffset = { 0, 0, 0 };
copyRegion.extent.width = texture->width;
copyRegion.extent.height = texture->height;
copyRegion.extent.depth = 1;
copyRegion.extent.width = tex2D[level].dimensions().x;
copyRegion.extent.height = tex2D[level].dimensions().y;
copyRegion.extent.depth = 1;
// Put image copy into command buffer
vkCmdCopyImage(cmdBuffer,
mappableImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copyRegion);
// Put image copy into command buffer
vkCmdCopyImage(
cmdBuffer,
mipLevels[level].image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
texture->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion);
// Change texture image layout to shader read after the copy
// Change texture image layout to shader read after the copy
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture->imageLayout);
}
// Submit command buffer containing copy and image layout commands
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
VkFence nullFence = { VK_NULL_HANDLE };
VkSubmitInfo submitInfo = vkTools::initializers::submitInfo();
submitInfo.waitSemaphoreCount = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &cmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, nullFence);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// Clean up linear images
// No longer required after mip levels
// have been transformed over to optimal tiling
for (auto& level : mipLevels)
{
vkDestroyImage(device, level.image, nullptr);
vkFreeMemory(device, level.memory, nullptr);
}
}
else
{
// Prefer using optimal tiling, as linear tiling
// may support only a small set of features
// depending on implementation (e.g. no mip maps, only one layer, etc.)
// Check if this support is supported for linear tiling
assert(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage);
assert(!err);
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex);
// Allocate host memory
err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory);
assert(!err);
// Bind allocated image for use
err = vkBindImageMemory(device, mappableImage, mappableMemory, 0);
assert(!err);
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subRes.mipLevel = 0;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
assert(!err);
// Map image memory
err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data);
assert(!err);
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture->image = mappableImage;
texture->deviceMemory = mappableMemory;
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
// Setup image memory barrier
setImageLayout(
cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
texture->imageLayout);
// Submit command buffer containing copy and image layout commands
err = vkEndCommandBuffer(cmdBuffer);
assert(!err);
@ -253,30 +336,8 @@ namespace vkTools
err = vkQueueWaitIdle(queue);
assert(!err);
}
else
{
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture->image = mappableImage;
texture->deviceMemory = mappableMemory;
texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Setup image memory barrier
setImageLayout(cmdBuffer,
texture->image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
texture->imageLayout);
}
// Create sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the
// texture data
// This means you could have multiple sampler objects
// for the same texture with different settings
// This is similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = {};
sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
sampler.magFilter = VK_FILTER_LINEAR;
@ -286,10 +347,13 @@ namespace vkTools
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.maxAnisotropy = 0;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
sampler.maxLod = 0.0f;
// Max level-of-detail should match mip level count
sampler.maxLod = (useStaging) ? (float)texture->mipLevels : 0.0f;
// Enable anisotropic filtering
sampler.maxAnisotropy = 8;
sampler.anisotropyEnable = VK_TRUE;
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
err = vkCreateSampler(device, &sampler, nullptr, &texture->sampler);
assert(!err);
@ -306,15 +370,12 @@ namespace vkTools
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture->mipLevels : 1;
view.image = texture->image;
err = vkCreateImageView(device, &view, nullptr, &texture->view);
assert(!err);
if (useStaging)
{
vkDestroyImage(device, mappableImage, nullptr);
vkFreeMemory(device, mappableMemory, nullptr);
}
}
// Clean up vulkan resources used by a texture object