/* * Vulkan Example - Viewport array with single pass rendering using geometry shaders * * Copyright (C) 2017 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: vkglTF::Model scene; struct UBOGS { glm::mat4 projection[2]; glm::mat4 modelview[2]; glm::vec4 lightPos = glm::vec4(-2.5f, -3.5f, 0.0f, 1.0f); } uboGS; vks::Buffer uniformBufferGS; VkPipeline pipeline; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Camera and view properties float eyeSeparation = 0.08f; const float focalLength = 0.5f; const float fov = 90.0f; const float zNear = 0.1f; const float zFar = 256.0f; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Viewport arrays"; camera.type = Camera::CameraType::firstperson; camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f)); camera.setTranslation(glm::vec3(7.0f, 3.2f, 0.0f)); camera.setMovementSpeed(5.0f); } ~VulkanExample() { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBufferGS.destroy(); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Geometry shader support is required for this example if (deviceFeatures.geometryShader) { enabledFeatures.geometryShader = VK_TRUE; } else { vks::tools::exitFatal("Selected GPU does not support geometry shaders!", VK_ERROR_FEATURE_NOT_PRESENT); } // Multiple viewports must be supported if (deviceFeatures.multiViewport) { enabledFeatures.multiViewport = VK_TRUE; } else { vks::tools::exitFatal("Selected GPU does not support multi viewports!", VK_ERROR_FEATURE_NOT_PRESENT); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewports[2]; // Left viewports[0] = { 0, 0, (float)width / 2.0f, (float)height, 0.0, 1.0f }; // Right viewports[1] = { (float)width / 2.0f, 0, (float)width / 2.0f, (float)height, 0.0, 1.0f }; vkCmdSetViewport(drawCmdBuffers[i], 0, 2, viewports); VkRect2D scissorRects[2] = { vks::initializers::rect2D(width/2, height, 0, 0), vks::initializers::rect2D(width/2, height, width / 2, 0), }; vkCmdSetScissor(drawCmdBuffers[i], 0, 2, scissorRects); vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); scene.draw(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { scene.loadFromFile(getAssetPath() + "models/sampleroom.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY); } void setupDescriptorPool() { // Example uses two ubos std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(static_cast(poolSizes.size()), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_GEOMETRY_BIT, 0) // Binding 1: Geometry shader ubo }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferGS.descriptor), // Binding 0 :Geometry shader ubo }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); // We use two viewports VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(2, 2, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.renderPass = renderPass; pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color}); shaderStages[0] = loadShader(getShadersPath() + "viewportarray/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "viewportarray/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // A geometry shader is used to output geometry to multiple viewports in one single pass // See the "invocations" decorator of the layout input in the shader shaderStages[2] = loadShader(getShadersPath() + "viewportarray/multiview.geom.spv", VK_SHADER_STAGE_GEOMETRY_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Geometry shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferGS, sizeof(uboGS))); // Map persistent VK_CHECK_RESULT(uniformBufferGS.map()); updateUniformBuffers(); } void updateUniformBuffers() { // Geometry shader matrices for the two viewports // See http://paulbourke.net/stereographics/stereorender/ // Calculate some variables float aspectRatio = (float)(width * 0.5f) / (float)height; float wd2 = zNear * tan(glm::radians(fov / 2.0f)); float ndfl = zNear / focalLength; float left, right; float top = wd2; float bottom = -wd2; glm::vec3 camFront; camFront.x = -cos(glm::radians(camera.rotation.x)) * sin(glm::radians(camera.rotation.y)); camFront.y = sin(glm::radians(camera.rotation.x)); camFront.z = cos(glm::radians(camera.rotation.x)) * cos(glm::radians(camera.rotation.y)); camFront = glm::normalize(camFront); glm::vec3 camRight = glm::normalize(glm::cross(camFront, glm::vec3(0.0f, 1.0f, 0.0f))); glm::mat4 rotM = glm::mat4(1.0f); glm::mat4 transM; rotM = glm::rotate(rotM, glm::radians(camera.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); rotM = glm::rotate(rotM, glm::radians(camera.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); rotM = glm::rotate(rotM, glm::radians(camera.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); // Left eye left = -aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl; right = aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl; transM = glm::translate(glm::mat4(1.0f), camera.position - camRight * (eyeSeparation / 2.0f)); uboGS.projection[0] = glm::frustum(left, right, bottom, top, zNear, zFar); uboGS.modelview[0] = rotM * transM; // Right eye left = -aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl; right = aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl; transM = glm::translate(glm::mat4(1.0f), camera.position + camRight * (eyeSeparation / 2.0f)); uboGS.projection[1] = glm::frustum(left, right, bottom, top, zNear, zFar); uboGS.modelview[1] = rotM * transM; memcpy(uniformBufferGS.mapped, &uboGS, sizeof(uboGS)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->sliderFloat("Eye separation", &eyeSeparation, -1.0f, 1.0f)) { updateUniformBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()