/* * Vulkan Example - Sparse texture residency example * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ /* todos: - check sparse binding support on queue - residencyNonResidentStrict - meta data - Run-time image data upload */ #include #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "vulkandevice.hpp" #include "vulkanbuffer.hpp" #include "vulkanheightmap.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float normal[3]; float uv[2]; }; std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV, }; // Virtual texture page as a part of the partially resident texture // Contains memory bindings, offsets and status information struct VirtualTexturePage { VkOffset3D offset; VkExtent3D extent; VkSparseImageMemoryBind imageMemoryBind; // Sparse image memory bind for this page VkDeviceSize size; // Page (memory) size in bytes uint32_t mipLevel; // Mip level that this page belongs to uint32_t layer; // Array layer that this page belongs to uint32_t index; VirtualTexturePage() { imageMemoryBind.memory = VK_NULL_HANDLE; // Page initially not backed up by memory } // Allocate Vulkan memory for the virtual page void allocate(VkDevice device, uint32_t memoryTypeIndex) { if (imageMemoryBind.memory != VK_NULL_HANDLE) { //std::cout << "Page " << index << " already allocated" << std::endl; return; }; imageMemoryBind = {}; VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); allocInfo.allocationSize = size; allocInfo.memoryTypeIndex = memoryTypeIndex; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &imageMemoryBind.memory)); VkImageSubresource subResource{}; subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subResource.mipLevel = mipLevel; subResource.arrayLayer = layer; // Sparse image memory binding imageMemoryBind.subresource = subResource; imageMemoryBind.extent = extent; imageMemoryBind.offset = offset; } // Release Vulkan memory allocated for this page void release(VkDevice device) { if (imageMemoryBind.memory != VK_NULL_HANDLE) { vkFreeMemory(device, imageMemoryBind.memory, nullptr); imageMemoryBind.memory = VK_NULL_HANDLE; //std::cout << "Page " << index << " released" << std::endl; } } }; // Virtual texture object containing all pages struct VirtualTexture { VkDevice device; VkImage image; // Texture image handle VkBindSparseInfo bindSparseInfo; // Sparse queue binding information std::vector pages; // Contains all virtual pages of the texture std::vector sparseImageMemoryBinds; // Sparse image memory bindings of all memory-backed virtual tables std::vector opaqueMemoryBinds; // Sparse ópaque memory bindings for the mip tail (if present) VkSparseImageMemoryBindInfo imageMemoryBindInfo; // Sparse image memory bind info VkSparseImageOpaqueMemoryBindInfo opaqueMemoryBindInfo; // Sparse image opaque memory bind info (mip tail) uint32_t mipTailStart; // First mip level in mip tail VirtualTexturePage* addPage(VkOffset3D offset, VkExtent3D extent, const VkDeviceSize size, const uint32_t mipLevel, uint32_t layer) { VirtualTexturePage newPage; newPage.offset = offset; newPage.extent = extent; newPage.size = size; newPage.mipLevel = mipLevel; newPage.layer = layer; newPage.index = static_cast(pages.size()); newPage.imageMemoryBind.offset = offset; newPage.imageMemoryBind.extent = extent; pages.push_back(newPage); return &pages.back(); } // Call before sparse binding to update memory bind list etc. void updateSparseBindInfo() { // Update list of memory-backed sparse image memory binds sparseImageMemoryBinds.resize(pages.size()); uint32_t index = 0; for (auto page : pages) { sparseImageMemoryBinds[index] = page.imageMemoryBind; index++; } // Update sparse bind info bindSparseInfo = vkTools::initializers::bindSparseInfo(); // todo: Semaphore for queue submission // bindSparseInfo.signalSemaphoreCount = 1; // bindSparseInfo.pSignalSemaphores = &bindSparseSemaphore; // Image memory binds imageMemoryBindInfo.image = image; imageMemoryBindInfo.bindCount = static_cast(sparseImageMemoryBinds.size()); imageMemoryBindInfo.pBinds = sparseImageMemoryBinds.data(); bindSparseInfo.imageBindCount = (imageMemoryBindInfo.bindCount > 0) ? 1 : 0; bindSparseInfo.pImageBinds = &imageMemoryBindInfo; // Opaque image memory binds (mip tail) opaqueMemoryBindInfo.image = image; opaqueMemoryBindInfo.bindCount = static_cast(opaqueMemoryBinds.size()); opaqueMemoryBindInfo.pBinds = opaqueMemoryBinds.data(); bindSparseInfo.imageOpaqueBindCount = (opaqueMemoryBindInfo.bindCount > 0) ? 1 : 0; bindSparseInfo.pImageOpaqueBinds = &opaqueMemoryBindInfo; } // Release all Vulkan resources void destroy() { for (auto page : pages) { page.release(device); } for (auto bind : opaqueMemoryBinds) { vkFreeMemory(device, bind.memory, nullptr); } } }; uint32_t memoryTypeIndex; int32_t lastFilledMip = 0; class VulkanExample : public VulkanExampleBase { public: //todo: comments struct SparseTexture : VirtualTexture { VkSampler sampler; VkImageLayout imageLayout; VkImageView view; VkDescriptorImageInfo descriptor; VkFormat format; uint32_t width, height; uint32_t mipLevels; uint32_t layerCount; } texture; struct { vkTools::VulkanTexture source; } textures; vkTools::HeightMap *heightMap = nullptr; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; uint32_t indexCount; vk::Buffer uniformBufferVS; struct UboVS { glm::mat4 projection; glm::mat4 model; glm::vec4 viewPos; float lodBias = 0.0f; } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; //todo: comment VkSemaphore bindSparseSemaphore = VK_NULL_HANDLE; // Device features to be enabled for this example virtual VkPhysicalDeviceFeatures getEnabledFeatures() { VkPhysicalDeviceFeatures enabledFeatures{}; enabledFeatures.shaderResourceResidency = VK_TRUE; enabledFeatures.shaderResourceMinLod = VK_TRUE; return enabledFeatures; } VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -1.3f; rotation = { 76.25f, 0.0f, 0.0f }; title = "Vulkan Example - Sparse texture residency"; enableTextOverlay = true; std::cout.imbue(std::locale("")); // Check if the GPU supports sparse residency for 2D images if (!vulkanDevice->features.sparseResidencyImage2D) { vkTools::exitFatal("Device does not support sparse residency for 2D images!", "Feature not supported"); } camera.type = Camera::CameraType::firstperson; camera.movementSpeed = 50.0f; #ifndef __ANDROID__ camera.rotationSpeed = 0.25f; #endif camera.position = { 84.5f, 40.5f, 225.0f }; camera.setRotation(glm::vec3(-8.5f, -200.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 1024.0f); } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class if (heightMap) delete heightMap; destroyTextureImage(texture); vkDestroySemaphore(device, bindSparseSemaphore, nullptr); vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBufferVS.destroy(); } glm::uvec3 alignedDivision(const VkExtent3D& extent, const VkExtent3D& granularity) { glm::uvec3 res; res.x = extent.width / granularity.width + ((extent.width % granularity.width) ? 1u : 0u); res.y = extent.height / granularity.height + ((extent.height % granularity.height) ? 1u : 0u); res.z = extent.depth / granularity.depth + ((extent.depth % granularity.depth) ? 1u : 0u); return res; } void prepareSparseTexture(uint32_t width, uint32_t height, uint32_t layerCount, VkFormat format) { texture.device = vulkanDevice->logicalDevice; texture.width = width; texture.height = height; texture.mipLevels = floor(log2(std::max(width, height))) + 1; texture.layerCount = layerCount; texture.format = format; // Get device properites for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Get sparse image properties std::vector sparseProperties; // Sparse properties count for the desired format uint32_t sparsePropertiesCount; vkGetPhysicalDeviceSparseImageFormatProperties( physicalDevice, format, VK_IMAGE_TYPE_2D, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, &sparsePropertiesCount, nullptr); // Check if sparse is supported for this format if (sparsePropertiesCount == 0) { std::cout << "Error: Requested format does not support sparse features!" << std::endl; return; } // Get actual image format properties sparseProperties.resize(sparsePropertiesCount); vkGetPhysicalDeviceSparseImageFormatProperties( physicalDevice, format, VK_IMAGE_TYPE_2D, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, &sparsePropertiesCount, sparseProperties.data()); std::cout << "Sparse image format properties: " << sparsePropertiesCount << std::endl; for (auto props : sparseProperties) { std::cout << "\t Image granularity: w = " << props.imageGranularity.width << " h = " << props.imageGranularity.height << " d = " << props.imageGranularity.depth << std::endl; std::cout << "\t Aspect mask: " << props.aspectMask << std::endl; std::cout << "\t Flags: " << props.flags << std::endl; } // Create sparse image VkImageCreateInfo sparseImageCreateInfo = vkTools::initializers::imageCreateInfo(); sparseImageCreateInfo.imageType = VK_IMAGE_TYPE_2D; sparseImageCreateInfo.format = texture.format; sparseImageCreateInfo.mipLevels = texture.mipLevels; sparseImageCreateInfo.arrayLayers = texture.layerCount; sparseImageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; sparseImageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; sparseImageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; sparseImageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; sparseImageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; sparseImageCreateInfo.extent = { texture.width, texture.height, 1 }; sparseImageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; sparseImageCreateInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT; VK_CHECK_RESULT(vkCreateImage(device, &sparseImageCreateInfo, nullptr, &texture.image)); // Get memory requirements VkMemoryRequirements sparseImageMemoryReqs; // Sparse image memory requirement counts vkGetImageMemoryRequirements(device, texture.image, &sparseImageMemoryReqs); std::cout << "Image memory requirements:" << std::endl; std::cout << "\t Size: " << sparseImageMemoryReqs.size << std::endl; std::cout << "\t Alignment: " << sparseImageMemoryReqs.alignment << std::endl; // Check requested image size against hardware sparse limit if (sparseImageMemoryReqs.size > vulkanDevice->properties.limits.sparseAddressSpaceSize) { std::cout << "Error: Requested sparse image size exceeds supportes sparse address space size!" << std::endl; return; }; // Get sparse memory requirements // Count uint32_t sparseMemoryReqsCount; std::vector sparseMemoryReqs(32); vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data()); if (sparseMemoryReqsCount == 0) { std::cout << "Error: No memory requirements for the sparse image!" << std::endl; return; } sparseMemoryReqs.resize(sparseMemoryReqsCount); // Get actual requirements vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data()); std::cout << "Sparse image memory requirements: " << sparseMemoryReqsCount << std::endl; for (auto reqs : sparseMemoryReqs) { std::cout << "\t Image granularity: w = " << reqs.formatProperties.imageGranularity.width << " h = " << reqs.formatProperties.imageGranularity.height << " d = " << reqs.formatProperties.imageGranularity.depth << std::endl; std::cout << "\t Mip tail first LOD: " << reqs.imageMipTailFirstLod << std::endl; std::cout << "\t Mip tail size: " << reqs.imageMipTailSize << std::endl; std::cout << "\t Mip tail offset: " << reqs.imageMipTailOffset << std::endl; std::cout << "\t Mip tail stride: " << reqs.imageMipTailStride << std::endl; //todo:multiple reqs texture.mipTailStart = reqs.imageMipTailFirstLod; } lastFilledMip = texture.mipTailStart - 1; // Get sparse image requirements for the color aspect VkSparseImageMemoryRequirements sparseMemoryReq; bool colorAspectFound = false; for (auto reqs : sparseMemoryReqs) { if (reqs.formatProperties.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { sparseMemoryReq = reqs; colorAspectFound = true; break; } } if (!colorAspectFound) { std::cout << "Error: Could not find sparse image memory requirements for color aspect bit!" << std::endl; return; } // todo: // Calculate number of required sparse memory bindings by alignment assert((sparseImageMemoryReqs.size % sparseImageMemoryReqs.alignment) == 0); memoryTypeIndex = vulkanDevice->getMemoryType(sparseImageMemoryReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); // Get sparse bindings uint32_t sparseBindsCount = static_cast(sparseImageMemoryReqs.size / sparseImageMemoryReqs.alignment); std::vector sparseMemoryBinds(sparseBindsCount); // Check if the format has a single mip tail for all layers or one mip tail for each layer // The mip tail contains all mip levels > sparseMemoryReq.imageMipTailFirstLod bool singleMipTail = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT; // Sparse bindings for each mip level of all layers outside of the mip tail for (uint32_t layer = 0; layer < texture.layerCount; layer++) { // sparseMemoryReq.imageMipTailFirstLod is the first mip level that's stored inside the mip tail for (uint32_t mipLevel = 0; mipLevel < sparseMemoryReq.imageMipTailFirstLod; mipLevel++) { VkExtent3D extent; extent.width = std::max(sparseImageCreateInfo.extent.width >> mipLevel, 1u); extent.height = std::max(sparseImageCreateInfo.extent.height >> mipLevel, 1u); extent.depth = std::max(sparseImageCreateInfo.extent.depth >> mipLevel, 1u); VkImageSubresource subResource{}; subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subResource.mipLevel = mipLevel; subResource.arrayLayer = layer; // Aligned sizes by image granularity VkExtent3D imageGranularity = sparseMemoryReq.formatProperties.imageGranularity; glm::uvec3 sparseBindCounts = alignedDivision(extent, imageGranularity); glm::uvec3 lastBlockExtent; lastBlockExtent.x = (extent.width % imageGranularity.width) ? extent.width % imageGranularity.width : imageGranularity.width; lastBlockExtent.y = (extent.height % imageGranularity.height) ? extent.height % imageGranularity.height : imageGranularity.height; lastBlockExtent.z = (extent.depth % imageGranularity.depth) ? extent.depth % imageGranularity.depth : imageGranularity.depth; // Alllocate memory for some blocks uint32_t index = 0; for (uint32_t z = 0; z < sparseBindCounts.z; z++) { for (uint32_t y = 0; y < sparseBindCounts.y; y++) { for (uint32_t x = 0; x < sparseBindCounts.x; x++) { // Offset VkOffset3D offset; offset.x = x * imageGranularity.width; offset.y = y * imageGranularity.height; offset.z = z * imageGranularity.depth; // Size of the page VkExtent3D extent; extent.width = (x == sparseBindCounts.x - 1) ? lastBlockExtent.x : imageGranularity.width; extent.height = (y == sparseBindCounts.y - 1) ? lastBlockExtent.y : imageGranularity.height; extent.depth = (z == sparseBindCounts.z - 1) ? lastBlockExtent.z : imageGranularity.depth; // Add new virtual page VirtualTexturePage *newPage = texture.addPage(offset, extent, sparseImageMemoryReqs.alignment, mipLevel, layer); newPage->imageMemoryBind.subresource = subResource; if ((x % 2 == 1) || (y % 2 == 1)) { // Allocate memory for this virtual page //newPage->allocate(device, memoryTypeIndex); } index++; } } } } // Check if format has one mip tail per layer if ((!singleMipTail) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels)) { // Allocate memory for the mip tail VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize; allocInfo.memoryTypeIndex = memoryTypeIndex; VkDeviceMemory deviceMemory; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory)); // (Opaque) sparse memory binding VkSparseMemoryBind sparseMemoryBind{}; sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset + layer * sparseMemoryReq.imageMipTailStride; sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize; sparseMemoryBind.memory = deviceMemory; texture.opaqueMemoryBinds.push_back(sparseMemoryBind); } } // end layers and mips std::cout << "Texture info:" << std::endl; std::cout << "\tDim: " << texture.width << " x " << texture.height << std::endl; std::cout << "\tVirtual pages: " << texture.pages.size() << std::endl; // Check if format has one mip tail for all layers if ((sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels)) { // Allocate memory for the mip tail VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize; allocInfo.memoryTypeIndex = memoryTypeIndex; VkDeviceMemory deviceMemory; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory)); // (Opaque) sparse memory binding VkSparseMemoryBind sparseMemoryBind{}; sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset; sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize; sparseMemoryBind.memory = deviceMemory; texture.opaqueMemoryBinds.push_back(sparseMemoryBind); } // Create signal semaphore for sparse binding VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &bindSparseSemaphore)); // Prepare bind sparse info for reuse in queue submission texture.updateSparseBindInfo(); // Bind to queue // todo: in draw? vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore vkQueueWaitIdle(queue); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = static_cast(texture.mipLevels); sampler.anisotropyEnable = vulkanDevice->features.samplerAnisotropy; sampler.maxAnisotropy = vulkanDevice->features.samplerAnisotropy ? vulkanDevice->properties.limits.maxSamplerAnisotropy : 1.0f; sampler.anisotropyEnable = false; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; view.subresourceRange.levelCount = texture.mipLevels; view.image = texture.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); // Fill image descriptor image info that can be used during the descriptor set setup texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; texture.descriptor.imageView = texture.view; texture.descriptor.sampler = texture.sampler; // Fill smallest (non-tail) mip map leve fillVirtualTexture(lastFilledMip); } // Free all Vulkan resources used a texture object void destroyTextureImage(SparseTexture texture) { vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkDestroySampler(device, texture.sampler, nullptr); texture.destroy(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &heightMap->vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], heightMap->indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], heightMap->indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { VulkanExampleBase::prepareFrame(); // Sparse bindings // vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore // vkQueueWaitIdle(queue); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void loadAssets() { textureLoader->loadTexture(getAssetPath() + "textures/ground_dry_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.source, false, VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT); } // Generate a terrain quad patch for feeding to the tessellation control shader void generateTerrain() { heightMap = new vkTools::HeightMap(vulkanDevice, queue); #if defined(__ANDROID__) heightMap->loadFromFile(getAssetPath() + "textures/terrain_heightmap_r16.ktx", 128, glm::vec3(2.0f, 48.0f, 2.0f), vkTools::HeightMap::topologyTriangles, androidApp->activity->assetManager); #else heightMap->loadFromFile(getAssetPath() + "textures/terrain_heightmap_r16.ktx", 128, glm::vec3(2.0f, 48.0f, 2.0f), vkTools::HeightMap::topologyTriangles); #endif } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)); // Location 1 : Vertex normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)); // Location 1 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texture.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/texturesparseresidency/sparseresidency.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/texturesparseresidency/sparseresidency.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS), &uboVS)); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.projection = camera.matrices.perspective; uboVS.model = camera.matrices.view; //uboVS.model = glm::mat4(); uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f); VK_CHECK_RESULT(uniformBufferVS.map()); memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); uniformBufferVS.unmap(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); generateTerrain(); setupVertexDescriptions(); prepareUniformBuffers(); // Create a virtual texture with max. possible dimension (does not take up any VRAM yet) prepareSparseTexture(8192, 8192, 1, VK_FORMAT_R8G8B8A8_UNORM); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } void changeLodBias(float delta) { uboVS.lodBias += delta; if (uboVS.lodBias < 0.0f) { uboVS.lodBias = 0.0f; } if (uboVS.lodBias > texture.mipLevels) { uboVS.lodBias = (float)texture.mipLevels; } updateUniformBuffers(); updateTextOverlay(); } // Clear all pages of the virtual texture // todo: just for testing void flushVirtualTexture() { vkDeviceWaitIdle(device); for (auto& page : texture.pages) { page.release(device); } texture.updateSparseBindInfo(); vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore vkQueueWaitIdle(queue); lastFilledMip = texture.mipTailStart - 1; } // Fill a complete mip level void fillVirtualTexture(int32_t &mipLevel) { vkDeviceWaitIdle(device); std::default_random_engine rndEngine(std::random_device{}()); std::uniform_real_distribution rndDist(0.0f, 1.0f); std::vector imageBlits; for (auto& page : texture.pages) { if ((page.mipLevel == mipLevel) && /*(rndDist(rndEngine) < 0.5f) &&*/ (page.imageMemoryBind.memory == VK_NULL_HANDLE)) { // Allocate page memory page.allocate(device, memoryTypeIndex); // Current mip level scaling uint32_t scale = texture.width / (texture.width >> page.mipLevel); for (uint32_t x = 0; x < scale; x++) { for (uint32_t y = 0; y < scale; y++) { // Image blit VkImageBlit blit{}; // Source blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; blit.srcSubresource.baseArrayLayer = 0; blit.srcSubresource.layerCount = 1; blit.srcSubresource.mipLevel = 0; blit.srcOffsets[0] = { 0, 0, 0 }; blit.srcOffsets[1] = { static_cast(textures.source.width), static_cast(textures.source.height), 1 }; // Dest blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; blit.dstSubresource.baseArrayLayer = 0; blit.dstSubresource.layerCount = 1; blit.dstSubresource.mipLevel = page.mipLevel; blit.dstOffsets[0].x = static_cast(page.offset.x + x * 128 / scale); blit.dstOffsets[0].y = static_cast(page.offset.y + y * 128 / scale); blit.dstOffsets[0].z = 0; blit.dstOffsets[1].x = static_cast(blit.dstOffsets[0].x + page.extent.width / scale); blit.dstOffsets[1].y = static_cast(blit.dstOffsets[0].y + page.extent.height / scale); blit.dstOffsets[1].z = 1; imageBlits.push_back(blit); } } } } // Update sparse queue binding texture.updateSparseBindInfo(); vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore vkQueueWaitIdle(queue); // Issue blit commands if (imageBlits.size() > 0) { auto tStart = std::chrono::high_resolution_clock::now(); VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBlitImage( copyCmd, textures.source.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(imageBlits.size()), imageBlits.data(), VK_FILTER_LINEAR ); vulkanDevice->flushCommandBuffer(copyCmd, queue); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Image blits took " << tDiff << " ms" << std::endl; } vkQueueWaitIdle(queue); mipLevel--; } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case KEY_KPADD: case GAMEPAD_BUTTON_R1: changeLodBias(0.1f); break; case KEY_KPSUB: case GAMEPAD_BUTTON_L1: changeLodBias(-0.1f); break; case KEY_F: flushVirtualTexture(); break; case KEY_N: if (lastFilledMip >= 0) { fillVirtualTexture(lastFilledMip); } break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { uint32_t respages = 0; std::for_each(texture.pages.begin(), texture.pages.end(), [&respages](VirtualTexturePage page) { respages += (page.imageMemoryBind.memory != VK_NULL_HANDLE) ? 1 :0; }); std::stringstream ss; ss << std::setprecision(2) << std::fixed << uboVS.lodBias; #if defined(__ANDROID__) // textOverlay->addText("LOD bias: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else //textOverlay->addText("LOD bias: " + ss.str() + " (numpad +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Resident pages: " + std::to_string(respages) + " / " + std::to_string(texture.pages.size()), 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("\"n\" to fill next mip level (" + std::to_string(lastFilledMip) + ")", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); #endif } }; VULKAN_EXAMPLE_MAIN()