/* * Vulkan Example - Basic sample for using mesh and task shader to replace the traditional vertex pipeline * * Copyright (C) 2022-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" class VulkanExample : public VulkanExampleBase { public: struct UniformData { glm::mat4 projection; glm::mat4 model; glm::mat4 view; } uniformData; vks::Buffer uniformBuffer; uint32_t indexCount{ 0 }; VkPipeline pipeline{ VK_NULL_HANDLE }; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; PFN_vkCmdDrawMeshTasksEXT vkCmdDrawMeshTasksEXT{ VK_NULL_HANDLE }; VkPhysicalDeviceMeshShaderFeaturesEXT enabledMeshShaderFeatures{}; VulkanExample() : VulkanExampleBase() { title = "Mesh shaders"; timerSpeed *= 0.25f; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(0.0f, 15.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -5.0f)); // The mesh shader extension requires at least Vulkan Core 1.1 apiVersion = VK_API_VERSION_1_1; // Extensions required by mesh shading enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_EXT_MESH_SHADER_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_SPIRV_1_4_EXTENSION_NAME); // Required by VK_KHR_spirv_1_4 enabledDeviceExtensions.push_back(VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME); // We need to enable the mesh and task shader feature using a new struct introduced with the extension enabledMeshShaderFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_FEATURES_EXT; enabledMeshShaderFeatures.meshShader = VK_TRUE; enabledMeshShaderFeatures.taskShader = VK_TRUE; deviceCreatepNextChain = &enabledMeshShaderFeatures; } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBuffer.destroy(); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 1.0f } };; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); // Use mesh and task shader to draw the scene vkCmdDrawMeshTasksEXT(drawCmdBuffers[i], 1, 1, 1); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(static_cast(poolSizes.size()), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_MESH_BIT_EXT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorLayoutInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector modelWriteDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor), }; vkUpdateDescriptorSets(device, static_cast(modelWriteDescriptorSets.size()), modelWriteDescriptorSets.data(), 0, nullptr); } void preparePipelines() { // Layout VkPipelineLayoutCreateInfo pipelineLayoutInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); // Not using a vertex shader, mesh shading doesn't require vertex input state pipelineCI.pInputAssemblyState = nullptr; pipelineCI.pVertexInputState = nullptr; // Instead of a vertex shader, we use a mesh and task shader shaderStages[0] = loadShader(getShadersPath() + "meshshader/meshshader.mesh.spv", VK_SHADER_STAGE_MESH_BIT_EXT); shaderStages[1] = loadShader(getShadersPath() + "meshshader/meshshader.task.spv", VK_SHADER_STAGE_TASK_BIT_EXT); shaderStages[2] = loadShader(getShadersPath() + "meshshader/meshshader.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData))); VK_CHECK_RESULT(uniformBuffer.map()); updateUniformBuffers(); } void updateUniformBuffers() { uniformData.projection = camera.matrices.perspective; uniformData.view = camera.matrices.view; uniformData.model = glm::mat4(1.0f); memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); // Get the function pointer of the mesh shader drawing funtion vkCmdDrawMeshTasksEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdDrawMeshTasksEXT")); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; updateUniformBuffers(); draw(); } }; VULKAN_EXAMPLE_MAIN()