/* * Vulkan Example - Hardware accelerated ray tracing intersection shader samples * * Copyright (C) 2023 by Sascha Willems - www.saschawillems.de * * This sample uses intersection shaders for doing prodcedural ray traced geometry * Instead of passing actual geometry, this samples only passes bounding boxes and sphere descriptions * The bounding boxes are used for the ray traversal and the sphere intersections are done * within the intersection shader * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "VulkanRaytracingSample.h" class VulkanExample : public VulkanRaytracingSample { public: AccelerationStructure bottomLevelAS; AccelerationStructure topLevelAS; std::vector shaderGroups{}; struct ShaderBindingTables { ShaderBindingTable raygen; ShaderBindingTable miss; ShaderBindingTable hit; } shaderBindingTables; struct UniformData { glm::mat4 viewInverse; glm::mat4 projInverse; glm::vec4 lightPos; } uniformData; vks::Buffer ubo; VkPipeline pipeline; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; struct Sphere { glm::vec3 center; float radius; glm::vec4 color; }; struct AABB { glm::vec3 min; glm::vec3 max; }; vks::Buffer spheresBuffer; vks::Buffer aabbsBuffer; uint32_t aabbCount{ 0 }; // This sample is derived from an extended base class that saves most of the ray tracing setup boiler plate VulkanExample() : VulkanRaytracingSample() { title = "Ray tracing intersection shaders"; timerSpeed *= 0.25f; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -60.0f)); enableExtensions(); } ~VulkanExample() { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); deleteStorageImage(); deleteAccelerationStructure(bottomLevelAS); deleteAccelerationStructure(topLevelAS); shaderBindingTables.raygen.destroy(); shaderBindingTables.miss.destroy(); shaderBindingTables.hit.destroy(); ubo.destroy(); spheresBuffer.destroy(); aabbsBuffer.destroy(); } void createBuffers() { // We'll be using two buffers to describe the procedural geometry // A buffer with randpmly generatd sphere descriptions (center, radius, material) that'll be passed to the ray tracing shaders as a shader storage buffer object std::vector spheres{}; std::default_random_engine rndGenerator(benchmark.active ? 0 : (unsigned)time(nullptr)); std::uniform_real_distribution uniformDist(0.0, 1.0); std::uniform_real_distribution sizeDist(1.0, 2.0); for (uint32_t i = 0; i < 1024; i++) { Sphere sphere{}; //sphere.center = sphere.radius = sizeDist(rndGenerator); sphere.color = glm::vec4(uniformDist(rndGenerator), uniformDist(rndGenerator), uniformDist(rndGenerator), 1.0f); // Get a random point in a sphere float x,y,z,d{ 0.0f }; do { x = uniformDist(rndGenerator) * 2.0f - 1.0f; y = uniformDist(rndGenerator) * 2.0f - 1.0f; z = uniformDist(rndGenerator) * 2.0f - 1.0f; d = x * x + y * y + z * z; } while (d > 1.0); sphere.center = glm::vec3(x, y, z) * 25.0f; spheres.push_back(sphere); } // A buffer with the (axis aligned) bounding boxes of our sphere, which is used during the ray tracing traversal for hit detection std::vector aabbs{}; for (auto& sphere : spheres) { aabbs.push_back({ sphere.center - glm::vec3(sphere.radius), sphere.center + glm::vec3(sphere.radius) }); } aabbCount = static_cast(aabbs.size()); // Copy the buffer to the device for performance reasons vks::Buffer stagingBuffer{}; VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Spheres VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(Sphere)* spheres.size(), spheres.data())); VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &spheresBuffer, sizeof(Sphere)* spheres.size())); vulkanDevice->copyBuffer(&stagingBuffer, &spheresBuffer, queue); stagingBuffer.destroy(); // AABBs VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, sizeof(AABB)* aabbs.size(), aabbs.data())); VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &aabbsBuffer, sizeof(AABB)* aabbs.size())); vulkanDevice->copyBuffer(&stagingBuffer, &aabbsBuffer, queue); stagingBuffer.destroy(); } /* Create the bottom level acceleration structure only containing axis aligned bounding boxes for our procedural geometry */ void createBottomLevelAccelerationStructure() { // Build VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR(); accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR; // Instead of providing actual geometry (e.g. triangles), we only provide the axis aligned bounding boxes (AABBs) of the spheres // The data for the actual spheres is passed elsewhere as a shader storage buffer object accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_AABBS_KHR; accelerationStructureGeometry.geometry.aabbs.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_AABBS_DATA_KHR; accelerationStructureGeometry.geometry.aabbs.data.deviceAddress = getBufferDeviceAddress(aabbsBuffer.buffer); accelerationStructureGeometry.geometry.aabbs.stride = sizeof(AABB); // Get size info VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR; accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationStructureBuildGeometryInfo.geometryCount = 1; accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry; VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR(); vkGetAccelerationStructureBuildSizesKHR( device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &accelerationStructureBuildGeometryInfo, &aabbCount, &accelerationStructureBuildSizesInfo); createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo); // Create a small scratch buffer used during build of the bottom level acceleration structure ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize); VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR; accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR; accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle; accelerationBuildGeometryInfo.geometryCount = 1; accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry; accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress; VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{}; accelerationStructureBuildRangeInfo.primitiveCount = aabbCount; std::vector accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo }; // Build the acceleration structure on the device via a one-time command buffer submission // Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBuildAccelerationStructuresKHR( commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildStructureRangeInfos.data()); vulkanDevice->flushCommandBuffer(commandBuffer, queue); deleteScratchBuffer(scratchBuffer); } /* The top level acceleration structure contains the scene's object instances */ void createTopLevelAccelerationStructure() { VkTransformMatrixKHR transformMatrix = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; VkAccelerationStructureInstanceKHR instance{}; instance.transform = transformMatrix; instance.instanceCustomIndex = 0; instance.mask = 0xFF; instance.instanceShaderBindingTableRecordOffset = 0; instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR; instance.accelerationStructureReference = bottomLevelAS.deviceAddress; // Buffer for instance data vks::Buffer instancesBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &instancesBuffer, sizeof(VkAccelerationStructureInstanceKHR), &instance)); VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{}; instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer); VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR(); accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR; accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR; accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR; accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE; accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress; // Get size info VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR; accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationStructureBuildGeometryInfo.geometryCount = 1; accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry; uint32_t primitive_count = 1; VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR(); vkGetAccelerationStructureBuildSizesKHR( device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &accelerationStructureBuildGeometryInfo, &primitive_count, &accelerationStructureBuildSizesInfo); createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo); // Create a small scratch buffer used during build of the top level acceleration structure ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize); VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR; accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR; accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle; accelerationBuildGeometryInfo.geometryCount = 1; accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry; accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress; VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{}; accelerationStructureBuildRangeInfo.primitiveCount = 1; accelerationStructureBuildRangeInfo.primitiveOffset = 0; accelerationStructureBuildRangeInfo.firstVertex = 0; accelerationStructureBuildRangeInfo.transformOffset = 0; std::vector accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo }; // Build the acceleration structure on the device via a one-time command buffer submission // Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBuildAccelerationStructuresKHR( commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildStructureRangeInfos.data()); vulkanDevice->flushCommandBuffer(commandBuffer, queue); deleteScratchBuffer(scratchBuffer); instancesBuffer.destroy(); } /* Create the Shader Binding Tables that binds the programs and top-level acceleration structure SBT Layout used in this sample: /-----------\ | raygen | |-----------| | miss | |-----------| | hit + int | \-----------/ */ void createShaderBindingTables() { const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize; const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment); const uint32_t groupCount = static_cast(shaderGroups.size()); const uint32_t sbtSize = groupCount * handleSizeAligned; std::vector shaderHandleStorage(sbtSize); VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data())); createShaderBindingTable(shaderBindingTables.raygen, 1); createShaderBindingTable(shaderBindingTables.miss, 1); createShaderBindingTable(shaderBindingTables.hit, 1); // Copy handles memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize); memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize); memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 2, handleSize); } /* Create the descriptor sets used for the ray tracing dispatch */ void createDescriptorSets() { std::vector poolSizes = { { VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 }, { VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 }, { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 }, { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2 } }; VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool)); VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet)); VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR(); descriptorAccelerationStructureInfo.accelerationStructureCount = 1; descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle; VkWriteDescriptorSet accelerationStructureWrite{}; accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; // The specialized acceleration structure descriptor has to be chained accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo; accelerationStructureWrite.dstSet = descriptorSet; accelerationStructureWrite.dstBinding = 0; accelerationStructureWrite.descriptorCount = 1; accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR; // We pass the sphere descriptions as shader storage buffer, so the ray tracing shaders can source properties from it VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL }; VkDescriptorBufferInfo spheresBufferDescriptor{ spheresBuffer.buffer, 0, VK_WHOLE_SIZE }; std::vector writeDescriptorSets = { // Binding 0: Top level acceleration structure accelerationStructureWrite, // Binding 1: Ray tracing result image vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor), // Binding 2: Uniform data vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor), // Binding 3: Spheres buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &spheresBufferDescriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE); } /* Create our ray tracing pipeline */ void createRayTracingPipeline() { std::vector setLayoutBindings = { // Binding 0: Acceleration structure vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0), // Binding 1: Storage image vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1), // Binding 2: Uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 2), // Binding 3: Spheres buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_INTERSECTION_BIT_KHR, 3), }; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCI, nullptr, &pipelineLayout)); /* Setup ray tracing shader groups */ std::vector shaderStages; // Ray generation group { shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR)); VkRayTracingShaderGroupCreateInfoKHR shaderGroup{}; shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR; shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; shaderGroup.generalShader = static_cast(shaderStages.size()) - 1; shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(shaderGroup); } // Miss group { shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR)); VkRayTracingShaderGroupCreateInfoKHR shaderGroup{}; shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR; shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; shaderGroup.generalShader = static_cast(shaderStages.size()) - 1; shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(shaderGroup); } // Closest hit group (procedural) { shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)); VkRayTracingShaderGroupCreateInfoKHR shaderGroup{}; shaderGroup.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR; shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR; shaderGroup.generalShader = VK_SHADER_UNUSED_KHR; shaderGroup.closestHitShader = static_cast(shaderStages.size()) - 1; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; // This group als uses an intersection shader for proedural geometry (see interseciton.rint for details) shaderStages.push_back(loadShader(getShadersPath() + "raytracingintersection/intersection.rint.spv", VK_SHADER_STAGE_INTERSECTION_BIT_KHR)); shaderGroup.intersectionShader = static_cast(shaderStages.size()) - 1; shaderGroups.push_back(shaderGroup); } VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI = vks::initializers::rayTracingPipelineCreateInfoKHR(); rayTracingPipelineCI.stageCount = static_cast(shaderStages.size()); rayTracingPipelineCI.pStages = shaderStages.data(); rayTracingPipelineCI.groupCount = static_cast(shaderGroups.size()); rayTracingPipelineCI.pGroups = shaderGroups.data(); rayTracingPipelineCI.maxPipelineRayRecursionDepth = 2; rayTracingPipelineCI.layout = pipelineLayout; VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline)); } /* Create the uniform buffer used to pass matrices to the ray tracing ray generation shader */ void createUniformBuffer() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &ubo, sizeof(uniformData), &uniformData)); VK_CHECK_RESULT(ubo.map()); updateUniformBuffers(); } /* If the window has been resized, we need to recreate the storage image and it's descriptor */ void handleResize() { // Recreate image createStorageImage(swapChain.colorFormat, { width, height, 1 }); // Update descriptor VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL }; VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor); vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE); resized = false; } /* Command buffer generation */ void buildCommandBuffers() { if (resized) { handleResize(); } VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); /* Dispatch the ray tracing commands */ vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0); VkStridedDeviceAddressRegionKHR emptySbtEntry = {}; vkCmdTraceRaysKHR( drawCmdBuffers[i], &shaderBindingTables.raygen.stridedDeviceAddressRegion, &shaderBindingTables.miss.stridedDeviceAddressRegion, &shaderBindingTables.hit.stridedDeviceAddressRegion, &emptySbtEntry, width, height, 1); /* Copy ray tracing output to swap chain image */ // Prepare current swap chain image as transfer destination vks::tools::setImageLayout( drawCmdBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Prepare ray tracing output image as transfer source vks::tools::setImageLayout( drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresourceRange); VkImageCopy copyRegion{}; copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent = { width, height, 1 }; vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Transition swap chain image back for presentation vks::tools::setImageLayout( drawCmdBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, subresourceRange); // Transition ray tracing output image back to general layout vks::tools::setImageLayout( drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, subresourceRange); drawUI(drawCmdBuffers[i], frameBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void updateUniformBuffers() { uniformData.projInverse = glm::inverse(camera.matrices.perspective); uniformData.viewInverse = glm::inverse(camera.matrices.view); uniformData.lightPos = glm::vec4(cos(glm::radians(timer * 360.0f)) * 60.0f, 0.0f, 25.0f + sin(glm::radians(timer * 360.0f)) * 60.0f, 0.0f); memcpy(ubo.mapped, &uniformData, sizeof(uniformData)); } void getEnabledFeatures() { // Enable features required for ray tracing using feature chaining via pNext enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES; enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE; enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR; enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE; enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures; enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR; enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE; enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures; deviceCreatepNextChain = &enabledAccelerationStructureFeatures; } void prepare() { VulkanRaytracingSample::prepare(); createBuffers(); // Create the acceleration structures used to render the ray traced scene createBottomLevelAccelerationStructure(); createTopLevelAccelerationStructure(); createStorageImage(swapChain.colorFormat, { width, height, 1 }); createUniformBuffer(); createRayTracingPipeline(); createShaderBindingTables(); createDescriptorSets(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; draw(); if (!paused || camera.updated) updateUniformBuffers(); } }; VULKAN_EXAMPLE_MAIN()