/* * Vulkan Demo Scene * * Don't take this a an example, it's more of a personal playground * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * Note : Different license than the other examples! * * This code is licensed under the Mozilla Public License Version 2.0 (http://opensource.org/licenses/MPL-2.0) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: struct DemoMeshes { std::vector names{ "logos", "background", "models", "skybox" }; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; VkPipeline pipeline; VulkanMeshLoader* logos; VulkanMeshLoader* background; VulkanMeshLoader* models; VulkanMeshLoader* skybox; } demoMeshes; std::vector meshes; struct { vkTools::UniformData meshVS; } uniformData; struct { glm::mat4 projection; glm::mat4 model; glm::mat4 normal; glm::mat4 view; glm::vec4 lightPos; } uboVS; struct { vkTools::VulkanTexture skybox; } textures; struct { VkPipeline logos; VkPipeline models; VkPipeline skybox; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; glm::vec4 lightPos = glm::vec4(1.0f, 2.0f, 0.0f, 0.0f); VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { width = 1280; height = 720; zoom = -3.75f; rotationSpeed = 0.5f; rotation = glm::vec3(15.0f, 0.f, 0.0f); enableTextOverlay = true; title = "Vulkan Demo Scene - (c) 2016 by Sascha Willems"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.logos, nullptr); vkDestroyPipeline(device, pipelines.models, nullptr); vkDestroyPipeline(device, pipelines.skybox, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkTools::destroyUniformData(device, &uniformData.meshVS); for (auto& mesh : meshes) { vkDestroyBuffer(device, mesh->vertexBuffer.buf, nullptr); vkFreeMemory(device, mesh->vertexBuffer.mem, nullptr); vkDestroyBuffer(device, mesh->indexBuffer.buf, nullptr); vkFreeMemory(device, mesh->indexBuffer.mem, nullptr); } textureLoader->destroyTexture(textures.skybox); delete(demoMeshes.logos); delete(demoMeshes.background); delete(demoMeshes.models); delete(demoMeshes.skybox); } void loadTextures() { textureLoader->loadCubemap( getAssetPath() + "textures/cubemap_vulkan.ktx", VK_FORMAT_R8G8B8A8_UNORM, &textures.skybox); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; for (auto& mesh : meshes) { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, mesh->pipeline); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &mesh->vertexBuffer.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], mesh->indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], mesh->indexBuffer.count, 1, 0, 0, 0); } vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void prepareVertices() { struct Vertex { float pos[3]; float normal[3]; float uv[2]; float color[3]; }; // Load meshes for demos scene demoMeshes.logos = new VulkanMeshLoader(&vulkanDevice); demoMeshes.background = new VulkanMeshLoader(&vulkanDevice); demoMeshes.models = new VulkanMeshLoader(&vulkanDevice); demoMeshes.skybox = new VulkanMeshLoader(&vulkanDevice); #if defined(__ANDROID__) demoMeshes.logos->assetManager = androidApp->activity->assetManager; demoMeshes.background->assetManager = androidApp->activity->assetManager; demoMeshes.models->assetManager = androidApp->activity->assetManager; demoMeshes.skybox->assetManager = androidApp->activity->assetManager; #endif demoMeshes.logos->LoadMesh(getAssetPath() + "models/vulkanscenelogos.dae"); demoMeshes.background->LoadMesh(getAssetPath() + "models/vulkanscenebackground.dae"); demoMeshes.models->LoadMesh(getAssetPath() + "models/vulkanscenemodels.dae"); demoMeshes.skybox->LoadMesh(getAssetPath() + "models/cube.obj"); std::vector meshList; meshList.push_back(demoMeshes.skybox); // skybox first because of depth writes meshList.push_back(demoMeshes.logos); meshList.push_back(demoMeshes.background); meshList.push_back(demoMeshes.models); VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; // todo : Use mesh function for loading float scale = 1.0f; for (auto& mesh : meshList) { // Generate vertex buffer (pos, normal, uv, color) std::vector vertexBuffer; for (size_t m = 0; m < mesh->m_Entries.size(); m++) { for (size_t i = 0; i < mesh->m_Entries[m].Vertices.size(); i++) { glm::vec3 pos = mesh->m_Entries[m].Vertices[i].m_pos * scale; glm::vec3 normal = mesh->m_Entries[m].Vertices[i].m_normal; glm::vec2 uv = mesh->m_Entries[m].Vertices[i].m_tex; glm::vec3 col = mesh->m_Entries[m].Vertices[i].m_color; Vertex vert = { { pos.x, pos.y, pos.z }, { normal.x, -normal.y, normal.z }, { uv.s, uv.t }, { col.r, col.g, col.b } }; // Offset skybox mesh // todo : center before export if (mesh != demoMeshes.skybox) { vert.pos[1] += 1.15f; } vertexBuffer.push_back(vert); } } std::vector indexBuffer; for (size_t m = 0; m < mesh->m_Entries.size(); m++) { int indexBase = indexBuffer.size(); for (size_t i = 0; i < mesh->m_Entries[m].Indices.size(); i++) { indexBuffer.push_back(mesh->m_Entries[m].Indices[i] + indexBase); } } mesh->indexBuffer.count = static_cast(indexBuffer.size()); uint32_t vertexBufferSize = static_cast(vertexBuffer.size()) * sizeof(Vertex); uint32_t indexBufferSize = static_cast(indexBuffer.size()) * sizeof(uint32_t); struct { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create staging buffers // Vertex data createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, vertexBufferSize, vertexBuffer.data(), &vertexStaging.buffer, &vertexStaging.memory); // Index data createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, indexBufferSize, indexBuffer.data(), &indexStaging.buffer, &indexStaging.memory); // Create device local buffers // Vertex buffer createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, nullptr, &mesh->vertexBuffer.buf, &mesh->vertexBuffer.mem); // Index buffer createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, nullptr, &mesh->indexBuffer.buf, &mesh->indexBuffer.mem); // Copy from staging buffers VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, mesh->vertexBuffer.buf, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, mesh->indexBuffer.buf, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); // todo : staging meshes.push_back(mesh); } // Binding description demoMeshes.bindingDescriptions.resize(1); demoMeshes.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Location 0 : Position demoMeshes.attributeDescriptions.resize(4); demoMeshes.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal demoMeshes.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates demoMeshes.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 3 : Color demoMeshes.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); demoMeshes.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); demoMeshes.inputState.vertexBindingDescriptionCount = demoMeshes.bindingDescriptions.size(); demoMeshes.inputState.pVertexBindingDescriptions = demoMeshes.bindingDescriptions.data(); demoMeshes.inputState.vertexAttributeDescriptionCount = demoMeshes.attributeDescriptions.size(); demoMeshes.inputState.pVertexAttributeDescriptions = demoMeshes.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader color map image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Cube map image descriptor VkDescriptorImageInfo texDescriptorCubeMap = vkTools::initializers::descriptorImageInfo( textures.skybox.sampler, textures.skybox.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.meshVS.descriptor), // Binding 1 : Fragment shader image sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorCubeMap) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Pipeline for the meshes (armadillo, bunny, etc.) // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/vulkanscene/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/vulkanscene/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &demoMeshes.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.models)); // Pipeline for the logos shaderStages[0] = loadShader(getAssetPath() + "shaders/vulkanscene/logo.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/vulkanscene/logo.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.logos)); // Pipeline for the sky sphere (todo) rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; // Inverted culling depthStencilState.depthWriteEnable = VK_FALSE; // No depth writes shaderStages[0] = loadShader(getAssetPath() + "shaders/vulkanscene/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/vulkanscene/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox)); // Assign pipelines demoMeshes.logos->pipeline = pipelines.logos; demoMeshes.models->pipeline = pipelines.models; demoMeshes.background->pipeline = pipelines.models; demoMeshes.skybox->pipeline = pipelines.skybox; } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), &uboVS, &uniformData.meshVS.buffer, &uniformData.meshVS.memory, &uniformData.meshVS.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); uboVS.view = glm::lookAt( glm::vec3(0, 0, -zoom), cameraPos, glm::vec3(0, 1, 0) ); uboVS.model = glm::mat4(); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.normal = glm::inverseTranspose(uboVS.view * uboVS.model); uboVS.lightPos = lightPos; uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.meshVS.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.meshVS.memory); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); prepareVertices(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }