/* Copyright (c) 2025, Sascha Willems * * SPDX-License-Identifier: MIT * */ struct VSInput { float3 Pos; float3 Normal; }; struct VSOutput { float4 Pos : SV_POSITION; float3 UVW; float3 WorldPos; float3 Normal; float3 ViewVec; float3 LightVec; }; struct FSOutput { float4 Color0 : SV_TARGET0; float4 Color1 : SV_TARGET1; }; struct UBO { float4x4 projection; float4x4 modelview; float4x4 inverseModelview; float exposure; }; ConstantBuffer ubo; SamplerCube samplerEnvMap; [[SpecializationConstant]] const int objectType = 0; [shader("vertex")] VSOutput vertexMain(VSInput input) { VSOutput output; output.UVW = input.Pos; switch (objectType) { case 0: // Skybox output.WorldPos = mul((float4x3)ubo.modelview, input.Pos).xyz; output.Pos = mul(ubo.projection, float4(output.WorldPos, 1.0)); break; case 1: // Object output.WorldPos = mul(ubo.modelview, float4(input.Pos, 1.0)).xyz; output.Pos = mul(ubo.projection, mul(ubo.modelview, float4(input.Pos.xyz, 1.0))); break; } output.WorldPos = mul(ubo.modelview, float4(input.Pos, 1.0)).xyz; output.Normal = mul((float4x3)ubo.modelview, input.Normal).xyz; float3 lightPos = float3(0.0f, -5.0f, 5.0f); output.LightVec = lightPos.xyz - output.WorldPos.xyz; output.ViewVec = -output.WorldPos.xyz; return output; } [shader("fragment")] FSOutput fragmentMain(VSOutput input) { FSOutput output; float4 color; float3 wcNormal; switch (objectType) { case 0: // Skybox { float3 normal = normalize(input.UVW); color = samplerEnvMap.Sample(normal); } break; case 1: // Reflect { float3 wViewVec = mul((float4x3)ubo.inverseModelview, normalize(input.ViewVec)).xyz; float3 normal = normalize(input.Normal); float3 wNormal = mul((float4x3)ubo.inverseModelview, normal).xyz; float NdotL = max(dot(normal, input.LightVec), 0.0); float3 eyeDir = normalize(input.ViewVec); float3 halfVec = normalize(input.LightVec + eyeDir); float NdotH = max(dot(normal, halfVec), 0.0); float NdotV = max(dot(normal, eyeDir), 0.0); float VdotH = max(dot(eyeDir, halfVec), 0.0); // Geometric attenuation float NH2 = 2.0 * NdotH; float g1 = (NH2 * NdotV) / VdotH; float g2 = (NH2 * NdotL) / VdotH; float geoAtt = min(1.0, min(g1, g2)); const float F0 = 0.6; const float k = 0.2; // Fresnel (schlick approximation) float fresnel = pow(1.0 - VdotH, 5.0); fresnel *= (1.0 - F0); fresnel += F0; float spec = (fresnel * geoAtt) / (NdotV * NdotL * float.getPi()); color = samplerEnvMap.Sample(reflect(-wViewVec, wNormal)); color = float4(color.rgb * NdotL * (k + spec * (1.0 - k)), 1.0); } break; case 2: // Refract { float3 wViewVec = mul((float4x3)ubo.inverseModelview, normalize(input.ViewVec)).xyz; float3 wNormal = mul((float4x3)ubo.inverseModelview, input.Normal).xyz; color = samplerEnvMap.Sample(refract(-wViewVec, wNormal, 1.0/1.6)); } break; } // Color with manual exposure into attachment 0 output.Color0.rgb = float3(1.0, 1.0, 1.0) - exp(-color.rgb * ubo.exposure); // Bright parts for bloom into attachment 1 float l = dot(output.Color0.rgb, float3(0.2126, 0.7152, 0.0722)); float threshold = 0.75; output.Color1.rgb = (l > threshold) ? output.Color0.rgb : float3(0.0, 0.0, 0.0); output.Color1.a = 1.0; return output; }