/* Copyright (c) 2025, Sascha Willems * * SPDX-License-Identifier: MIT * */ struct VSInput { float3 Pos; float3 Normal; }; struct VSOutput { float4 Pos : SV_POSITION; float3 WorldPos; float3 Normal; }; struct UBO { float4x4 projection; float4x4 model; float4x4 view; float3 camPos; }; ConstantBuffer ubo; struct UBOParams { float4 lights[4]; }; ConstantBuffer uboParams; struct Material { [[vk::offset(12)]] float roughness; [[vk::offset(16)]] float metallic; [[vk::offset(20)]] float r; [[vk::offset(24)]] float g; [[vk::offset(28)]] float b; }; [[vk::push_constant]] Material material; static const float PI = 3.14159265359; // Normal Distribution function -------------------------------------- float D_GGX(float dotNH, float roughness) { float alpha = roughness * roughness; float alpha2 = alpha * alpha; float denom = dotNH * dotNH * (alpha2 - 1.0) + 1.0; return (alpha2)/(PI * denom*denom); } // Geometric Shadowing function -------------------------------------- float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness) { float r = (roughness + 1.0); float k = (r*r) / 8.0; float GL = dotNL / (dotNL * (1.0 - k) + k); float GV = dotNV / (dotNV * (1.0 - k) + k); return GL * GV; } // Fresnel function ---------------------------------------------------- float3 F_Schlick(float cosTheta, Material material) { float3 F0 = lerp(float3(0.04, 0.04, 0.04), float3(material.r, material.g, material.b), material.metallic); // * material.specular float3 F = F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); return F; } // Specular BRDF composition -------------------------------------------- float3 BRDF(float3 L, float3 V, float3 N, Material material) { // Precalculate vectors and dot products float3 H = normalize (V + L); float dotNV = clamp(dot(N, V), 0.0, 1.0); float dotNL = clamp(dot(N, L), 0.0, 1.0); float dotLH = clamp(dot(L, H), 0.0, 1.0); float dotNH = clamp(dot(N, H), 0.0, 1.0); // Light color fixed float3 lightColor = float3(1.0, 1.0, 1.0); float3 color = float3(0.0, 0.0, 0.0); if (dotNL > 0.0) { float rroughness = max(0.05, material.roughness); // D = Normal distribution (Distribution of the microfacets) float D = D_GGX(dotNH, material.roughness); // G = Geometric shadowing term (Microfacets shadowing) float G = G_SchlicksmithGGX(dotNL, dotNV, rroughness); // F = Fresnel factor (Reflectance depending on angle of incidence) float3 F = F_Schlick(dotNV, material); float3 spec = D * F * G / (4.0 * dotNL * dotNV); color += spec * dotNL * lightColor; } return color; } [shader("vertex")] VSOutput vertexMain(VSInput input, uniform float3 objPos) { VSOutput output; float3 locPos = mul(ubo.model, float4(input.Pos, 1.0)).xyz; output.WorldPos = locPos + objPos; output.Normal = mul((float3x3)ubo.model, input.Normal); output.Pos = mul(ubo.projection, mul(ubo.view, float4(output.WorldPos, 1.0))); return output; } [shader("fragment")] float4 fragmentMain(VSOutput input) { float3 N = normalize(input.Normal); float3 V = normalize(ubo.camPos - input.WorldPos); // Specular contribution float3 Lo = float3(0.0, 0.0, 0.0); for (int i = 0; i < 4; i++) { float3 L = normalize(uboParams.lights[i].xyz - input.WorldPos); Lo += BRDF(L, V, N, material); }; // Combine with ambient float3 color = float3(material.r, material.g, material.b) * 0.02; color += Lo; // Gamma correct color = pow(color, float3(0.4545, 0.4545, 0.4545)); return float4(color, 1.0); }