/* * Texture loader for Vulkan * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #pragma once #include #include #include "vulkandevice.hpp" #if defined(__ANDROID__) #include #endif namespace vkTools { /** * @brief Encapsulates a Vulkan texture object (including view, sampler, descriptor, etc.) */ struct VulkanTexture { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkDeviceMemory deviceMemory; VkImageView view; uint32_t width, height; uint32_t mipLevels; uint32_t layerCount; VkDescriptorImageInfo descriptor; }; /** * @brief A simple Vulkan texture uploader for getting images into GPU memory */ class VulkanTextureLoader { private: vk::VulkanDevice *vulkanDevice; VkQueue queue; VkCommandBuffer cmdBuffer; VkCommandPool cmdPool; public: #if defined(__ANDROID__) AAssetManager* assetManager = nullptr; #endif /** * Default constructor * * @param vulkanDevice Pointer to a valid VulkanDevice * @param queue Queue for the copy commands when using staging (queue must support transfers) * @param cmdPool Commandpool used to get command buffers for copies and layout transitions */ VulkanTextureLoader(vk::VulkanDevice *vulkanDevice, VkQueue queue, VkCommandPool cmdPool) { this->vulkanDevice = vulkanDevice; this->queue = queue; this->cmdPool = cmdPool; // Create command buffer for submitting image barriers // and converting tilings VkCommandBufferAllocateInfo cmdBufInfo = {}; cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cmdBufInfo.commandPool = cmdPool; cmdBufInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cmdBufInfo.commandBufferCount = 1; VK_CHECK_RESULT(vkAllocateCommandBuffers(vulkanDevice->logicalDevice, &cmdBufInfo, &cmdBuffer)); } /** * Default destructor * * @note Does not free texture resources */ ~VulkanTextureLoader() { vkFreeCommandBuffers(vulkanDevice->logicalDevice, cmdPool, 1, &cmdBuffer); } /** * Load a 2D texture including all mip levels * * @param filename File to load * @param format Vulkan format of the image data stored in the file * @param texture Pointer to the texture object to load the image into * @param (Optional) forceLinear Force linear tiling (not advised, defaults to false) * @param (Optional) imageUsageFlags Usage flags for the texture's image (defaults to VK_IMAGE_USAGE_SAMPLED_BIT) * * @note Only supports .ktx and .dds */ void loadTexture(std::string filename, VkFormat format, VulkanTexture *texture, bool forceLinear = false, VkImageUsageFlags imageUsageFlags = VK_IMAGE_USAGE_SAMPLED_BIT) { #if defined(__ANDROID__) assert(assetManager != nullptr); // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::texture2D tex2D(gli::load((const char*)textureData, size)); free(textureData); #else gli::texture2D tex2D(gli::load(filename.c_str())); #endif assert(!tex2D.empty()); texture->width = static_cast(tex2D[0].dimensions().x); texture->height = static_cast(tex2D[0].dimensions().y); texture->mipLevels = static_cast(tex2D.levels()); // Get device properites for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(vulkanDevice->physicalDevice, format, &formatProperties); // Only use linear tiling if requested (and supported by the device) // Support for linear tiling is mostly limited, so prefer to use // optimal tiling instead // On most implementations linear tiling will only support a very // limited amount of formats and features (mip maps, cubemaps, arrays, etc.) VkBool32 useStaging = !forceLinear; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; // Use a separate command buffer for texture loading VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo)); if (useStaging) { // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(); bufferCreateInfo.size = tex2D.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, tex2D.data(), tex2D.size()); vkUnmapMemory(vulkanDevice->logicalDevice, stagingMemory); // Setup buffer copy regions for each mip level std::vector bufferCopyRegions; uint32_t offset = 0; for (uint32_t i = 0; i < texture->mipLevels; i++) { VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = i; bufferCopyRegion.imageSubresource.baseArrayLayer = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = static_cast(tex2D[i].dimensions().x); bufferCopyRegion.imageExtent.height = static_cast(tex2D[i].dimensions().y); bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); offset += static_cast(tex2D[i].size()); } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture->mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = imageUsageFlags; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { texture->width, texture->height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(vulkanDevice->logicalDevice, &imageCreateInfo, nullptr, &texture->image)); vkGetImageMemoryRequirements(vulkanDevice->logicalDevice, texture->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &texture->deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(vulkanDevice->logicalDevice, texture->image, texture->deviceMemory, 0)); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = texture->mipLevels; subresourceRange.layerCount = 1; // Image barrier for optimal image (target) // Optimal image will be used as destination for the copy setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy mip levels from staging buffer vkCmdCopyBufferToImage( cmdBuffer, stagingBuffer, texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(bufferCopyRegions.size()), bufferCopyRegions.data() ); // Change texture image layout to shader read after all mip levels have been copied texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture->imageLayout, subresourceRange); // Submit command buffer containing copy and image layout commands VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer)); // Create a fence to make sure that the copies have finished before continuing VkFence copyFence; VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE); VK_CHECK_RESULT(vkCreateFence(vulkanDevice->logicalDevice, &fenceCreateInfo, nullptr, ©Fence)); VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, copyFence)); VK_CHECK_RESULT(vkWaitForFences(vulkanDevice->logicalDevice, 1, ©Fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT)); vkDestroyFence(vulkanDevice->logicalDevice, copyFence, nullptr); // Clean up staging resources vkFreeMemory(vulkanDevice->logicalDevice, stagingMemory, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, stagingBuffer, nullptr); } else { // Prefer using optimal tiling, as linear tiling // may support only a small set of features // depending on implementation (e.g. no mip maps, only one layer, etc.) // Check if this support is supported for linear tiling assert(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); VkImage mappableImage; VkDeviceMemory mappableMemory; VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { texture->width, texture->height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR; imageCreateInfo.usage = imageUsageFlags; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; // Load mip map level 0 to linear tiling image VK_CHECK_RESULT(vkCreateImage(vulkanDevice->logicalDevice, &imageCreateInfo, nullptr, &mappableImage)); // Get memory requirements for this image // like size and alignment vkGetImageMemoryRequirements(vulkanDevice->logicalDevice, mappableImage, &memReqs); // Set memory allocation size to required memory size memAllocInfo.allocationSize = memReqs.size; // Get memory type that can be mapped to host memory memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); // Allocate host memory VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &mappableMemory)); // Bind allocated image for use VK_CHECK_RESULT(vkBindImageMemory(vulkanDevice->logicalDevice, mappableImage, mappableMemory, 0)); // Get sub resource layout // Mip map count, array layer, etc. VkImageSubresource subRes = {}; subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subRes.mipLevel = 0; VkSubresourceLayout subResLayout; void *data; // Get sub resources layout // Includes row pitch, size offsets, etc. vkGetImageSubresourceLayout(vulkanDevice->logicalDevice, mappableImage, &subRes, &subResLayout); // Map image memory VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, mappableMemory, 0, memReqs.size, 0, &data)); // Copy image data into memory memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size()); vkUnmapMemory(vulkanDevice->logicalDevice, mappableMemory); // Linear tiled images don't need to be staged // and can be directly used as textures texture->image = mappableImage; texture->deviceMemory = mappableMemory; texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; // Setup image memory barrier setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, texture->imageLayout); // Submit command buffer containing copy and image layout commands VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer)); VkFence nullFence = { VK_NULL_HANDLE }; VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.waitSemaphoreCount = 0; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, nullFence)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); } // Create sampler VkSamplerCreateInfo sampler = {}; sampler.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; // Max level-of-detail should match mip level count sampler.maxLod = (useStaging) ? (float)texture->mipLevels : 0.0f; // Enable anisotropic filtering sampler.maxAnisotropy = 8; sampler.anisotropyEnable = VK_TRUE; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(vulkanDevice->logicalDevice, &sampler, nullptr, &texture->sampler)); // Create image view // Textures are not directly accessed by the shaders and // are abstracted by image views containing additional // information and sub resource ranges VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.pNext = NULL; view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; // Linear tiling usually won't support mip maps // Only set mip map count if optimal tiling is used view.subresourceRange.levelCount = (useStaging) ? texture->mipLevels : 1; view.image = texture->image; VK_CHECK_RESULT(vkCreateImageView(vulkanDevice->logicalDevice, &view, nullptr, &texture->view)); // Fill descriptor image info that can be used for setting up descriptor sets texture->descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL; texture->descriptor.imageView = texture->view; texture->descriptor.sampler = texture->sampler; } /** * Load a cubemap texture including all mip levels from a single file * * @param filename File to load * @param format Vulkan format of the image data stored in the file * @param texture Pointer to the texture object to load the image into * * @note Only supports .ktx and .dds */ void loadCubemap(std::string filename, VkFormat format, VulkanTexture *texture) { #if defined(__ANDROID__) assert(assetManager != nullptr); // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::textureCube texCube(gli::load((const char*)textureData, size)); free(textureData); #else gli::textureCube texCube(gli::load(filename)); #endif assert(!texCube.empty()); texture->width = static_cast(texCube.dimensions().x); texture->height = static_cast(texCube.dimensions().y); texture->mipLevels = static_cast(texCube.levels()); VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(); bufferCreateInfo.size = texCube.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, texCube.data(), texCube.size()); vkUnmapMemory(vulkanDevice->logicalDevice, stagingMemory); // Setup buffer copy regions for each face including all of it's miplevels std::vector bufferCopyRegions; size_t offset = 0; for (uint32_t face = 0; face < 6; face++) { for (uint32_t level = 0; level < texture->mipLevels; level++) { VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = level; bufferCopyRegion.imageSubresource.baseArrayLayer = face; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = static_cast(texCube[face][level].dimensions().x); bufferCopyRegion.imageExtent.height = static_cast(texCube[face][level].dimensions().y); bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); // Increase offset into staging buffer for next level / face offset += texCube[face][level].size(); } } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture->mipLevels; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { texture->width, texture->height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // Cube faces count as array layers in Vulkan imageCreateInfo.arrayLayers = 6; // This flag is required for cube map images imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VK_CHECK_RESULT(vkCreateImage(vulkanDevice->logicalDevice, &imageCreateInfo, nullptr, &texture->image)); vkGetImageMemoryRequirements(vulkanDevice->logicalDevice, texture->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &texture->deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(vulkanDevice->logicalDevice, texture->image, texture->deviceMemory, 0)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo)); // Image barrier for optimal image (target) // Set initial layout for all array layers (faces) of the optimal (target) tiled texture VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = texture->mipLevels; subresourceRange.layerCount = 6; vkTools::setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy the cube map faces from the staging buffer to the optimal tiled image vkCmdCopyBufferToImage( cmdBuffer, stagingBuffer, texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(bufferCopyRegions.size()), bufferCopyRegions.data()); // Change texture image layout to shader read after all faces have been copied texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture->imageLayout, subresourceRange); VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer)); // Create a fence to make sure that the copies have finished before continuing VkFence copyFence; VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE); VK_CHECK_RESULT(vkCreateFence(vulkanDevice->logicalDevice, &fenceCreateInfo, nullptr, ©Fence)); VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, copyFence)); VK_CHECK_RESULT(vkWaitForFences(vulkanDevice->logicalDevice, 1, ©Fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT)); vkDestroyFence(vulkanDevice->logicalDevice, copyFence, nullptr); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 8; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = (float)texture->mipLevels; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(vulkanDevice->logicalDevice, &sampler, nullptr, &texture->sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.subresourceRange.layerCount = 6; view.subresourceRange.levelCount = texture->mipLevels; view.image = texture->image; VK_CHECK_RESULT(vkCreateImageView(vulkanDevice->logicalDevice, &view, nullptr, &texture->view)); // Clean up staging resources vkFreeMemory(vulkanDevice->logicalDevice, stagingMemory, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, stagingBuffer, nullptr); // Fill descriptor image info that can be used for setting up descriptor sets texture->descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL; texture->descriptor.imageView = texture->view; texture->descriptor.sampler = texture->sampler; } /** * Load a texture array including all mip levels from a single file * * @param filename File to load * @param format Vulkan format of the image data stored in the file * @param texture Pointer to the texture object to load the image into * * @note Only supports .ktx and .dds */ void loadTextureArray(std::string filename, VkFormat format, VulkanTexture *texture) { #if defined(__ANDROID__) assert(assetManager != nullptr); // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::texture2DArray tex2DArray(gli::load((const char*)textureData, size)); free(textureData); #else gli::texture2DArray tex2DArray(gli::load(filename)); #endif assert(!tex2DArray.empty()); texture->width = static_cast(tex2DArray.dimensions().x); texture->height = static_cast(tex2DArray.dimensions().y); texture->layerCount = static_cast(tex2DArray.layers()); texture->mipLevels = static_cast(tex2DArray.levels()); VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(); bufferCreateInfo.size = tex2DArray.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, tex2DArray.data(), static_cast(tex2DArray.size())); vkUnmapMemory(vulkanDevice->logicalDevice, stagingMemory); // Setup buffer copy regions for each layer including all of it's miplevels std::vector bufferCopyRegions; size_t offset = 0; for (uint32_t layer = 0; layer < texture->layerCount; layer++) { for (uint32_t level = 0; level < texture->mipLevels; level++) { VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = level; bufferCopyRegion.imageSubresource.baseArrayLayer = layer; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = static_cast(tex2DArray[layer][level].dimensions().x); bufferCopyRegion.imageExtent.height = static_cast(tex2DArray[layer][level].dimensions().y); bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); // Increase offset into staging buffer for next level / face offset += tex2DArray[layer][level].size(); } } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { texture->width, texture->height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.arrayLayers = texture->layerCount; imageCreateInfo.mipLevels = texture->mipLevels; VK_CHECK_RESULT(vkCreateImage(vulkanDevice->logicalDevice, &imageCreateInfo, nullptr, &texture->image)); vkGetImageMemoryRequirements(vulkanDevice->logicalDevice, texture->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAllocInfo, nullptr, &texture->deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(vulkanDevice->logicalDevice, texture->image, texture->deviceMemory, 0)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo)); // Image barrier for optimal image (target) // Set initial layout for all array layers (faces) of the optimal (target) tiled texture VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = texture->mipLevels; subresourceRange.layerCount = texture->layerCount; vkTools::setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy the layers and mip levels from the staging buffer to the optimal tiled image vkCmdCopyBufferToImage( cmdBuffer, stagingBuffer, texture->image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(bufferCopyRegions.size()), bufferCopyRegions.data()); // Change texture image layout to shader read after all faces have been copied texture->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( cmdBuffer, texture->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture->imageLayout, subresourceRange); VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffer)); // Create a fence to make sure that the copies have finished before continuing VkFence copyFence; VkFenceCreateInfo fenceCreateInfo = vkTools::initializers::fenceCreateInfo(VK_FLAGS_NONE); VK_CHECK_RESULT(vkCreateFence(vulkanDevice->logicalDevice, &fenceCreateInfo, nullptr, ©Fence)); VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, copyFence)); VK_CHECK_RESULT(vkWaitForFences(vulkanDevice->logicalDevice, 1, ©Fence, VK_TRUE, DEFAULT_FENCE_TIMEOUT)); vkDestroyFence(vulkanDevice->logicalDevice, copyFence, nullptr); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 8; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = (float)texture->mipLevels; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(vulkanDevice->logicalDevice, &sampler, nullptr, &texture->sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.subresourceRange.layerCount = texture->layerCount; view.subresourceRange.levelCount = texture->mipLevels; view.image = texture->image; VK_CHECK_RESULT(vkCreateImageView(vulkanDevice->logicalDevice, &view, nullptr, &texture->view)); // Clean up staging resources vkFreeMemory(vulkanDevice->logicalDevice, stagingMemory, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, stagingBuffer, nullptr); // Fill descriptor image info that can be used for setting up descriptor sets texture->descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL; texture->descriptor.imageView = texture->view; texture->descriptor.sampler = texture->sampler; } /** * Free all Vulkan resources used by a texture object * * @param texture Texture object whose resources are to be freed */ void destroyTexture(VulkanTexture texture) { vkDestroyImageView(vulkanDevice->logicalDevice, texture.view, nullptr); vkDestroyImage(vulkanDevice->logicalDevice, texture.image, nullptr); vkDestroySampler(vulkanDevice->logicalDevice, texture.sampler, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, texture.deviceMemory, nullptr); } }; };