// Copyright 2020 Google LLC Texture2D textureposition : register(t1); SamplerState samplerposition : register(s1); Texture2D textureNormal : register(t2); SamplerState samplerNormal : register(s2); Texture2D textureAlbedo : register(t3); SamplerState samplerAlbedo : register(s3); // Depth from the light's point of view //layout (binding = 5) uniform sampler2DShadow samplerShadowMap; Texture2DArray textureShadowMap : register(t5); SamplerState samplerShadowMap : register(s5); #define LIGHT_COUNT 3 #define SHADOW_FACTOR 0.25 #define AMBIENT_LIGHT 0.1 #define USE_PCF struct Light { float4 position; float4 target; float4 color; float4x4 viewMatrix; }; struct UBO { float4 viewPos; Light lights[LIGHT_COUNT]; int useShadows; int displayDebugTarget; }; cbuffer ubo : register(b4) { UBO ubo; } float textureProj(float4 P, float layer, float2 offset) { float shadow = 1.0; float4 shadowCoord = P / P.w; shadowCoord.xy = shadowCoord.xy * 0.5 + 0.5; if (shadowCoord.z > -1.0 && shadowCoord.z < 1.0) { float dist = textureShadowMap.Sample(samplerShadowMap, float3(shadowCoord.xy + offset, layer)).r; if (shadowCoord.w > 0.0 && dist < shadowCoord.z) { shadow = SHADOW_FACTOR; } } return shadow; } float filterPCF(float4 sc, float layer) { int2 texDim; int elements; int levels; textureShadowMap.GetDimensions(0, texDim.x, texDim.y, elements, levels); float scale = 1.5; float dx = scale * 1.0 / float(texDim.x); float dy = scale * 1.0 / float(texDim.y); float shadowFactor = 0.0; int count = 0; int range = 1; for (int x = -range; x <= range; x++) { for (int y = -range; y <= range; y++) { shadowFactor += textureProj(sc, layer, float2(dx*x, dy*y)); count++; } } return shadowFactor / count; } float3 shadow(float3 fragcolor, float3 fragPos) { for (int i = 0; i < LIGHT_COUNT; ++i) { float4 shadowClip = mul(ubo.lights[i].viewMatrix, float4(fragPos.xyz, 1.0)); float shadowFactor; #ifdef USE_PCF shadowFactor= filterPCF(shadowClip, i); #else shadowFactor = textureProj(shadowClip, i, float2(0.0, 0.0)); #endif fragcolor *= shadowFactor; } return fragcolor; } float4 main([[vk::location(0)]] float2 inUV : TEXCOORD0) : SV_TARGET { // Get G-Buffer values float3 fragPos = textureposition.Sample(samplerposition, inUV).rgb; float3 normal = textureNormal.Sample(samplerNormal, inUV).rgb; float4 albedo = textureAlbedo.Sample(samplerAlbedo, inUV); float3 fragcolor; // Debug display if (ubo.displayDebugTarget > 0) { switch (ubo.displayDebugTarget) { case 1: fragcolor.rgb = shadow(float3(1.0, 1.0, 1.0), fragPos); break; case 2: fragcolor.rgb = fragPos; break; case 3: fragcolor.rgb = normal; break; case 4: fragcolor.rgb = albedo.rgb; break; case 5: fragcolor.rgb = albedo.aaa; break; } return float4(fragcolor, 1.0); } // Ambient part fragcolor = albedo.rgb * AMBIENT_LIGHT; float3 N = normalize(normal); for(int i = 0; i < LIGHT_COUNT; ++i) { // Vector to light float3 L = ubo.lights[i].position.xyz - fragPos; // Distance from light to fragment position float dist = length(L); L = normalize(L); // Viewer to fragment float3 V = ubo.viewPos.xyz - fragPos; V = normalize(V); float lightCosInnerAngle = cos(radians(15.0)); float lightCosOuterAngle = cos(radians(25.0)); float lightRange = 100.0; // Direction vector from source to target float3 dir = normalize(ubo.lights[i].position.xyz - ubo.lights[i].target.xyz); // Dual cone spot light with smooth transition between inner and outer angle float cosDir = dot(L, dir); float spotEffect = smoothstep(lightCosOuterAngle, lightCosInnerAngle, cosDir); float heightAttenuation = smoothstep(lightRange, 0.0f, dist); // Diffuse lighting float NdotL = max(0.0, dot(N, L)); float3 diff = NdotL.xxx; // Specular lighting float3 R = reflect(-L, N); float NdotR = max(0.0, dot(R, V)); float3 spec = (pow(NdotR, 16.0) * albedo.a * 2.5).xxx; fragcolor += float3((diff + spec) * spotEffect * heightAttenuation) * ubo.lights[i].color.rgb * albedo.rgb; } // Shadow calculations in a separate pass if (ubo.useShadows > 0) { fragcolor = shadow(fragcolor, fragPos); } return float4(fragcolor, 1); }