/* * Vulkan Example - Runtime mip map generation * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ // todo: Fallback for sampler selection on devices that don't support shaderSampledImageArrayDynamicIndexing #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanDevice.hpp" #include "VulkanBuffer.hpp" #include "VulkanModel.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: struct Texture { VkImage image; VkImageLayout imageLayout; VkDeviceMemory deviceMemory; VkImageView view; uint32_t width, height; uint32_t mipLevels; } texture; // To demonstrate mip mapping and filtering this example uses separate samplers std::vector samplerNames{ "No mip maps" , "Mip maps (bilinear)" , "Mip maps (anisotropic)" }; std::vector samplers; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_NORMAL, }); struct { vks::Model tunnel; } models; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; vks::Buffer uniformBufferVS; struct uboVS { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 viewPos; float lodBias = 0.0f; int32_t samplerIndex = 2; } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Runtime mip map generation"; camera.type = Camera::CameraType::firstperson; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 1024.0f); camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f)); camera.setTranslation(glm::vec3(40.75f, 0.0f, 0.0f)); camera.movementSpeed = 2.5f; camera.rotationSpeed = 0.5f; settings.overlay = true; timerSpeed *= 0.05f; paused = true; } ~VulkanExample() { destroyTextureImage(texture); vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBufferVS.destroy(); for (auto sampler : samplers) { vkDestroySampler(device, sampler, nullptr); } models.tunnel.destroy(); } void loadTexture(std::string fileName, VkFormat format, bool forceLinearTiling) { #if defined(__ANDROID__) // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, fileName.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::texture2d tex2D(gli::load((const char*)textureData, size)); #else gli::texture2d tex2D(gli::load(fileName)); #endif assert(!tex2D.empty()); VkFormatProperties formatProperties; texture.width = static_cast(tex2D[0].extent().x); texture.height = static_cast(tex2D[0].extent().y); // calculate num of mip maps // numLevels = 1 + floor(log2(max(w, h, d))) // Calculated as log2(max(width, height, depth))c + 1 (see specs) texture.mipLevels = floor(log2(std::max(texture.width, texture.height))) + 1; // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Mip-chain generation requires support for blit source and destination assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT); assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT); VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs = {}; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(); bufferCreateInfo.size = tex2D.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer)); vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, tex2D.data(), tex2D.size()); vkUnmapMemory(device, stagingMemory); // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture.mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { texture.width, texture.height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image)); vkGetImageMemoryRequirements(device, texture.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0)); VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.levelCount = 1; subresourceRange.layerCount = 1; // Optimal image will be used as destination for the copy, so we must transfer from our initial undefined image layout to the transfer destination layout vks::tools::setImageLayout( copyCmd, texture.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy the first mip of the chain, remaining mips will be generated VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = 0; bufferCopyRegion.imageSubresource.baseArrayLayer = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = texture.width; bufferCopyRegion.imageExtent.height = texture.height; bufferCopyRegion.imageExtent.depth = 1; vkCmdCopyBufferToImage(copyCmd, stagingBuffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion); // Transition first mip level to transfer source for read during blit texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vks::tools::setImageLayout( copyCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresourceRange); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); // Clean up staging resources vkFreeMemory(device, stagingMemory, nullptr); vkDestroyBuffer(device, stagingBuffer, nullptr); // Generate the mip chain // --------------------------------------------------------------- // We copy down the whole mip chain doing a blit from mip-1 to mip // An alternative way would be to always blit from the first mip level and sample that one down VkCommandBuffer blitCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Copy down mips from n-1 to n for (int32_t i = 1; i < texture.mipLevels; i++) { VkImageBlit imageBlit{}; // Source imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlit.srcSubresource.layerCount = 1; imageBlit.srcSubresource.mipLevel = i-1; imageBlit.srcOffsets[1].x = int32_t(texture.width >> (i - 1)); imageBlit.srcOffsets[1].y = int32_t(texture.height >> (i - 1)); imageBlit.srcOffsets[1].z = 1; // Destination imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlit.dstSubresource.layerCount = 1; imageBlit.dstSubresource.mipLevel = i; imageBlit.dstOffsets[1].x = int32_t(texture.width >> i); imageBlit.dstOffsets[1].y = int32_t(texture.height >> i); imageBlit.dstOffsets[1].z = 1; VkImageSubresourceRange mipSubRange = {}; mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; mipSubRange.baseMipLevel = i; mipSubRange.levelCount = 1; mipSubRange.layerCount = 1; // Transiton current mip level to transfer dest vks::tools::setImageLayout( blitCmd, texture.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipSubRange, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT); // Blit from previous level vkCmdBlitImage( blitCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_LINEAR); // Transiton current mip level to transfer source for read in next iteration vks::tools::setImageLayout( blitCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, mipSubRange, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); } // After the loop, all mip layers are in TRANSFER_SRC layout, so transition all to SHADER_READ subresourceRange.levelCount = texture.mipLevels; vks::tools::setImageLayout( blitCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture.imageLayout, subresourceRange); VulkanExampleBase::flushCommandBuffer(blitCmd, queue, true); // --------------------------------------------------------------- // Create samplers samplers.resize(3); VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; sampler.maxAnisotropy = 1.0; sampler.anisotropyEnable = VK_FALSE; // Without mip mapping VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[0])); // With mip mapping sampler.maxLod = (float)texture.mipLevels; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[1])); // With mip mapping and anisotropic filtering if (vulkanDevice->features.samplerAnisotropy) { sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy; sampler.anisotropyEnable = VK_TRUE; } VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[2])); // Create image view VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); view.image = texture.image; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; view.subresourceRange.levelCount = texture.mipLevels; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); } // Free all Vulkan resources used a texture object void destroyTextureImage(Texture texture) { vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.tunnel.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.tunnel.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.tunnel.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void loadAssets() { models.tunnel.loadFromFile(getAssetPath() + "models/tunnel_cylinder.dae", vertexLayout, 1.0f, vulkanDevice, queue); loadTexture(getAssetPath() + "textures/metalplate_nomips_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, false); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, 3 * sizeof(float)); // Location 1 : Vertex normal vertices.attributeDescriptions[2] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, 5 * sizeof(float)); vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), // Vertex shader UBO vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1), // Sampled image vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLER, 3), // 3 samplers (array) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings; // Binding 0: Vertex shader uniform buffer setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)); // Binding 1: Sampled image setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_SHADER_STAGE_FRAGMENT_BIT, 1)); // Binding 2: Sampler array (3 descriptors) setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2, 3)); VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets; // Binding 0: Vertex shader uniform buffer writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor)); // Binding 1: Sampled image VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo( VK_NULL_HANDLE, texture.view, texture.imageLayout); writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, &textureDescriptor)); // Binding 2: Sampler array std::vector samplerDescriptors; for (auto i = 0; i < samplers.size(); i++) { samplerDescriptors.push_back(vks::initializers::descriptorImageInfo(samplers[i], VK_NULL_HANDLE, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)); } VkWriteDescriptorSet samplerDescriptorWrite{}; samplerDescriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; samplerDescriptorWrite.dstSet = descriptorSet; samplerDescriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER; samplerDescriptorWrite.descriptorCount = static_cast(samplerDescriptors.size()); samplerDescriptorWrite.pImageInfo = samplerDescriptors.data(); samplerDescriptorWrite.dstBinding = 2; samplerDescriptorWrite.dstArrayElement = 0; writeDescriptorSets.push_back(samplerDescriptorWrite); vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/texturemipmapgen/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/texturemipmapgen/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS), &uboVS)); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projection = camera.matrices.perspective; uboVS.view = camera.matrices.view; uboVS.model = glm::rotate(glm::mat4(1.0f), glm::radians(timer * 360.0f), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f); VK_CHECK_RESULT(uniformBufferVS.map()); memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); uniformBufferVS.unmap(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, 0.0f, (float)texture.mipLevels)) { updateUniformBuffers(); } if (overlay->comboBox("Sampler type", &uboVS.samplerIndex, samplerNames)) { updateUniformBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()