/* * Vulkan Example - Cube map texture loading and displaying * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV }; class VulkanExample : public VulkanExampleBase { public: vkTools::VulkanTexture cubeMap; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer skybox, object; } meshes; struct { vkTools::UniformData objectVS; vkTools::UniformData skyboxVS; } uniformData; struct { glm::mat4 projection; glm::mat4 model; } uboVS; struct { VkPipeline skybox; VkPipeline reflect; } pipelines; struct { VkDescriptorSet object; VkDescriptorSet skybox; } descriptorSets; VkPipelineLayout pipelineLayout; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -4.0f; rotationSpeed = 0.25f; rotation = { -2.25f, -35.0f, 0.0f }; title = "Vulkan Example - Cube map"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Clean up texture resources vkDestroyImageView(device, cubeMap.view, nullptr); vkDestroyImage(device, cubeMap.image, nullptr); vkDestroySampler(device, cubeMap.sampler, nullptr); vkFreeMemory(device, cubeMap.deviceMemory, nullptr); vkDestroyPipeline(device, pipelines.skybox, nullptr); vkDestroyPipeline(device, pipelines.reflect, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.object); vkMeshLoader::freeMeshBufferResources(device, &meshes.skybox); vkTools::destroyUniformData(device, &uniformData.objectVS); vkTools::destroyUniformData(device, &uniformData.skyboxVS); } void loadTexture(const char* filename, VkFormat format, bool forceLinearTiling) { VkFormatProperties formatProperties; VkResult err; gli::textureCube texCube(gli::load(filename)); assert(!texCube.empty()); cubeMap.width = texCube[0].dimensions().x; cubeMap.height = texCube[0].dimensions().y; // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { cubeMap.width, cubeMap.height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.flags = 0; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; struct { VkImage image; VkDeviceMemory memory; } cubeFace[6]; // Allocate command buffer for image copies and layouts VkCommandBuffer cmdBuffer; VkCommandBufferAllocateInfo cmdBufAlllocatInfo = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); err = vkAllocateCommandBuffers(device, &cmdBufAlllocatInfo, &cmdBuffer); assert(!err); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); err = vkBeginCommandBuffer(cmdBuffer, &cmdBufInfo); assert(!err); // Load separate cube map faces into linear tiled textures for (uint32_t face = 0; face < 6; ++face) { err = vkCreateImage(device, &imageCreateInfo, nullptr, &cubeFace[face].image); assert(!err); vkGetImageMemoryRequirements(device, cubeFace[face].image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeFace[face].memory); assert(!err); err = vkBindImageMemory(device, cubeFace[face].image, cubeFace[face].memory, 0); assert(!err); VkImageSubresource subRes = {}; subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; VkSubresourceLayout subResLayout; void *data; vkGetImageSubresourceLayout(device, cubeFace[face].image, &subRes, &subResLayout); assert(!err); err = vkMapMemory(device, cubeFace[face].memory, 0, memReqs.size, 0, &data); assert(!err); memcpy(data, texCube[face][subRes.mipLevel].data(), texCube[face][subRes.mipLevel].size()); vkUnmapMemory(device, cubeFace[face].memory); // Image barrier for linear image (base) // Linear image will be used as a source for the copy vkTools::setImageLayout( cmdBuffer, cubeFace[face].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); } // Transfer cube map faces to optimal tiling // Setup texture as blit target with optimal tiling imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; imageCreateInfo.arrayLayers = 6; err = vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMap.image); assert(!err); vkGetImageMemoryRequirements(device, cubeMap.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMap.deviceMemory); assert(!err); err = vkBindImageMemory(device, cubeMap.image, cubeMap.deviceMemory, 0); assert(!err); // Image barrier for optimal image (target) // Optimal image will be used as destination for the copy vkTools::setImageLayout( cmdBuffer, cubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); // Copy cube map faces one by one for (uint32_t face = 0; face < 6; ++face) { // Copy region for image blit VkImageCopy copyRegion = {}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.baseArrayLayer = face; copyRegion.dstSubresource.mipLevel = 0; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent.width = cubeMap.width; copyRegion.extent.height = cubeMap.height; copyRegion.extent.depth = 1; // Put image copy into command buffer vkCmdCopyImage( cmdBuffer, cubeFace[face].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, cubeMap.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Change texture image layout to shader read after the copy cubeMap.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( cmdBuffer, cubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, cubeMap.imageLayout); } err = vkEndCommandBuffer(cmdBuffer); assert(!err); VkFence nullFence = { VK_NULL_HANDLE }; // Submit command buffer to graphis queue VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; err = vkQueueSubmit(queue, 1, &submitInfo, nullFence); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 8; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; err = vkCreateSampler(device, &sampler, nullptr, &cubeMap.sampler); assert(!err); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.subresourceRange.layerCount = 6; view.image = cubeMap.image; err = vkCreateImageView(device, &view, nullptr, &cubeMap.view); assert(!err); // Cleanup for (auto& face : cubeFace) { vkDestroyImage(device, face.image, nullptr); vkFreeMemory(device, face.memory, nullptr); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Skybox vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skybox.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skybox.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skybox.indexCount, 1, 0, 0, 0); // 3D object vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.object.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.object.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void loadMeshes() { loadMesh("./../data/models/sphere.obj", &meshes.object, vertexLayout, 0.05f); loadMesh("./../data/models/cube.obj", &meshes.skybox, vertexLayout, 0.05f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 5); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSets() { // Image descriptor for the cube map texture VkDescriptorImageInfo cubeMapDescriptor = vkTools::initializers::descriptorImageInfo( cubeMap.sampler, cubeMap.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); // 3D object descriptor set VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object); assert(!vkRes); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.objectVS.descriptor), // Binding 1 : Fragment shader cubemap sampler vkTools::initializers::writeDescriptorSet( descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cubeMapDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Sky box descriptor set vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox); assert(!vkRes); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.skyboxVS.descriptor), // Binding 1 : Fragment shader cubemap sampler vkTools::initializers::writeDescriptorSet( descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cubeMapDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Skybox pipeline (background cube) std::array shaderStages; shaderStages[0] = loadShader("./../data/shaders/cubemap/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/cubemap/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox); assert(!err); // Cube map reflect pipeline shaderStages[0] = loadShader("./../data/shaders/cubemap/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/cubemap/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); depthStencilState.depthWriteEnable = VK_TRUE; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.reflect); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // 3D objact createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.objectVS.buffer, &uniformData.objectVS.memory, &uniformData.objectVS.descriptor); // Skybox createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.skyboxVS.buffer, &uniformData.skyboxVS.memory, &uniformData.skyboxVS.descriptor); } void updateUniformBuffers() { // 3D object glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.objectVS.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.objectVS.memory); // Skysphere viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); err = vkMapMemory(device, uniformData.skyboxVS.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.skyboxVS.memory); } void prepare() { VulkanExampleBase::prepare(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); loadTexture( "./../data/textures/cubemap_yokohama.ktx", VK_FORMAT_BC3_UNORM_BLOCK, false); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); updateUniformBuffers(); } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #ifdef _WIN32 LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #else static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif #ifdef _WIN32 int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #else int main(const int argc, const char *argv[]) #endif { vulkanExample = new VulkanExample(); #ifdef _WIN32 vulkanExample->setupWindow(hInstance, WndProc); #else vulkanExample->setupWindow(); #endif vulkanExample->initSwapchain(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; }