/* * Vulkan Example - Fullscreen radial blur (Single pass offscreen effect) * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 128 #define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM #define TEX_FILTER VK_FILTER_LINEAR; // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool blur = true; bool displayTexture = false; struct { vkMeshLoader::MeshBuffer example; vkMeshLoader::MeshBuffer quad; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkTools::UniformData vsScene; vkTools::UniformData vsQuad; vkTools::UniformData fsQuad; } uniformData; struct { glm::mat4 projection; glm::mat4 model; } uboVS; struct { glm::mat4 projection; glm::mat4 model; } uboQuadVS; struct { int32_t texWidth = TEX_DIM; int32_t texHeight = TEX_DIM; float radialBlurScale = 0.25f; float radialBlurStrength = 0.75f; glm::vec2 radialOrigin = glm::vec2(0.5f, 0.5f); } uboQuadFS; struct { VkPipeline radialBlur; VkPipeline colorPass; VkPipeline phongPass; VkPipeline fullScreenOnly; } pipelines; struct { VkPipelineLayout radialBlur; VkPipelineLayout scene; } pipelineLayouts; struct { VkDescriptorSet scene; VkDescriptorSet quad; } descriptorSets; // Descriptor set layout is shared amongst // all descriptor sets VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; // Texture target for framebuffer blit vkTools::VulkanTexture textureTarget; } offScreenFrameBuf; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -12.0f; rotation = { -16.25f, -28.75f, 0.0f }; timerSpeed *= 0.5f; title = "Vulkan Example - Radial blur"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Texture target textureLoader->destroyTexture(offScreenFrameBuf.textureTarget); // Frame buffer // Color attachment vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.radialBlur, nullptr); vkDestroyPipeline(device, pipelines.phongPass, nullptr); vkDestroyPipeline(device, pipelines.colorPass, nullptr); vkDestroyPipeline(device, pipelines.fullScreenOnly, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.radialBlur, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.example); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.vsScene); vkTools::destroyUniformData(device, &uniformData.vsQuad); vkTools::destroyUniformData(device, &uniformData.fsQuad); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); } // Preapre an empty texture as the blit target from // the offscreen framebuffer void prepareTextureTarget(vkTools::VulkanTexture *tex, uint32_t width, uint32_t height, VkFormat format) { createSetupCommandBuffer(); VkFormatProperties formatProperties; VkResult err; // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Check if blit destination is supported for the requested format // Only try for optimal tiling, linear tiling usually won't support blit as destination anyway assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT); // Prepare blit target texture tex->width = width; tex->height = height; VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { width, height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; // Texture will be sampled in a shader and is also the blit destination imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; err = vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image); assert(!err); vkGetImageMemoryRequirements(device, tex->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &(tex->deviceMemory)); assert(!err); err = vkBindImageMemory(device, tex->image, tex->deviceMemory, 0); assert(!err); // Transform image layout to transfer destination tex->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( setupCmdBuffer, tex->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, tex->imageLayout); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = TEX_FILTER; sampler.minFilter = TEX_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; err = vkCreateSampler(device, &sampler, nullptr, &tex->sampler); assert(!err); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.image = tex->image; err = vkCreateImageView(device, &view, nullptr, &tex->view); assert(!err); flushSetupCommandBuffer(); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // blitted to our render target void prepareOffscreenFramebuffer() { createSetupCommandBuffer(); offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Find a suitable depth format VkFormat fbDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); VkResult err; // Color attachment VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = fbColorFormat; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // Image of the framebuffer is blit source image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; image.flags = 0; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0); assert(!err); vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); colorImageView.image = offScreenFrameBuf.color.image; err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view); assert(!err); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0); assert(!err); vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); depthStencilView.image = offScreenFrameBuf.depth.image; err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view); assert(!err); flushSetupCommandBuffer(); VkImageView attachments[2]; attachments[0] = offScreenFrameBuf.color.view; attachments[1] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer); assert(!err); } void createOffscreenCommandBuffer() { VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer); assert(!vkRes); } // The command buffer to copy for rendering // the offscreen scene and blitting it into // the texture target is only build once // and gets resubmitted void buildOffscreenCommandBuffer() { VkResult err; VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo); assert(!err); VkViewport viewport = vkTools::initializers::viewport( (float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.colorPass); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Make sure color writes to the framebuffer are finished before using it as transfer source vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); // Transform texture target to transfer destination vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.textureTarget.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); // Blit offscreen color buffer to our texture target VkImageBlit imgBlit; imgBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgBlit.srcSubresource.mipLevel = 0; imgBlit.srcSubresource.baseArrayLayer = 0; imgBlit.srcSubresource.layerCount = 1; imgBlit.srcOffsets[0] = { 0, 0, 0 }; imgBlit.srcOffsets[1].x = offScreenFrameBuf.width; imgBlit.srcOffsets[1].y = offScreenFrameBuf.height; imgBlit.srcOffsets[1].z = 1; imgBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgBlit.dstSubresource.mipLevel = 0; imgBlit.dstSubresource.baseArrayLayer = 0; imgBlit.dstSubresource.layerCount = 1; imgBlit.dstOffsets[0] = { 0, 0, 0 }; imgBlit.dstOffsets[1].x = offScreenFrameBuf.textureTarget.width; imgBlit.dstOffsets[1].y = offScreenFrameBuf.textureTarget.height; imgBlit.dstOffsets[1].z = 1; // Blit from framebuffer image to texture image // vkCmdBlitImage does scaling and (if necessary and possible) also does format conversions vkCmdBlitImage( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, offScreenFrameBuf.textureTarget.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imgBlit, VK_FILTER_LINEAR ); // Transform framebuffer color attachment back vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Transform texture target back to shader read // Makes sure that writes to the texture are finished before // it's accessed in the shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.textureTarget.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); err = vkEndCommandBuffer(offScreenCmdBuffer); assert(!err); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // 3D scene vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phongPass); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0); // Fullscreen quad with radial blur if (blur) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.radialBlur, 0, 1, &descriptorSets.quad, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (displayTexture) ? pipelines.fullScreenOnly : pipelines.radialBlur); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); } vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Gather command buffers to be sumitted to the queue std::vector submitCmdBuffers = { offScreenCmdBuffer, drawCmdBuffers[currentBuffer], }; submitInfo.commandBufferCount = submitCmdBuffers.size(); submitInfo.pCommandBuffers = submitCmdBuffers.data(); // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void loadMeshes() { loadMesh(getAssetPath() + "models/glowsphere.dae", &meshes.example, vertexLayout, 0.05f); } // Setup vertices for a single uv-mapped quad void generateQuad() { struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; #define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL }, { { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL } }; #undef QUAD_COLOR_NORMAL createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses three ubos and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { // Textured quad pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Fragment shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 2) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.radialBlur); assert(!err); // Offscreen pipeline layout err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene); assert(!err); } void setupDescriptorSet() { // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.quad); assert(!vkRes); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( offScreenFrameBuf.textureTarget.sampler, offScreenFrameBuf.textureTarget.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.quad, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.quad, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor), // Binding 2 : Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.quad, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniformData.fsQuad.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Offscreen 3D scene descriptor set vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene); assert(!vkRes); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsQuad.descriptor) }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Radial blur pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/radialblur/radialblur.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/radialblur/radialblur.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.radialBlur, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); // Additive blending blendAttachmentState.colorWriteMask = 0xF; blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA; VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.radialBlur); assert(!err); // No blending (for debug display) blendAttachmentState.blendEnable = VK_FALSE; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.fullScreenOnly); assert(!err); // Phong pass shaderStages[0] = loadShader(getAssetPath() + "shaders/radialblur/phongpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/radialblur/phongpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); pipelineCreateInfo.layout = pipelineLayouts.scene; blendAttachmentState.blendEnable = VK_FALSE; depthStencilState.depthWriteEnable = VK_TRUE; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.phongPass); assert(!err); // Color only pass (offscreen blur base) shaderStages[0] = loadShader(getAssetPath() + "shaders/radialblur/colorpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/radialblur/colorpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.colorPass); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { VkResult err; // Phong and color pass vertex shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); // Fullscreen quad vertex shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsQuad.buffer, &uniformData.vsQuad.memory, &uniformData.vsQuad.descriptor); // Fullscreen quad fragment shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboQuadFS), &uboQuadFS, &uniformData.fsQuad.buffer, &uniformData.fsQuad.memory, &uniformData.fsQuad.descriptor); updateUniformBuffersScene(); updateUniformBuffersScreen(); } // Update uniform buffers for rendering the 3D scene void updateUniformBuffersScene() { uboQuadVS.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 1.0f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboQuadVS.model = glm::mat4(); uboQuadVS.model = viewMatrix * glm::translate(uboQuadVS.model, glm::vec3(0, 0, 0)); uboQuadVS.model = glm::rotate(uboQuadVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboQuadVS.model = glm::rotate(uboQuadVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboQuadVS.model = glm::rotate(uboQuadVS.model, glm::radians(timer * 360.0f), glm::vec3(0.0f, 1.0f, 0.0f)); uboQuadVS.model = glm::rotate(uboQuadVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsQuad.memory, 0, sizeof(uboQuadVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboQuadVS, sizeof(uboQuadVS)); vkUnmapMemory(device, uniformData.vsQuad.memory); } // Update uniform buffers for the fullscreen quad void updateUniformBuffersScreen() { // Vertex shader uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); uboVS.model = glm::mat4(); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsScene.memory); // Fragment shader err = vkMapMemory(device, uniformData.fsQuad.memory, 0, sizeof(uboQuadFS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboQuadFS, sizeof(uboQuadFS)); vkUnmapMemory(device, uniformData.fsQuad.memory); } void prepare() { VulkanExampleBase::prepare(); generateQuad(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); prepareTextureTarget(&offScreenFrameBuf.textureTarget, TEX_DIM, TEX_DIM, TEX_FORMAT); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); createOffscreenCommandBuffer(); prepareOffscreenFramebuffer(); buildCommandBuffers(); buildOffscreenCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); if (!paused) { updateUniformBuffersScene(); } } virtual void viewChanged() { updateUniformBuffersScene(); updateUniformBuffersScreen(); } void toggleBlur() { blur = !blur; updateUniformBuffersScene(); reBuildCommandBuffers(); } void toggleTextureDisplay() { displayTexture = !displayTexture; reBuildCommandBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); if (uMsg == WM_KEYDOWN) { switch (wParam) { case 0x42: vulkanExample->toggleBlur(); break; case 0x54: vulkanExample->toggleTextureDisplay(); break; } } } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); #if !defined(__ANDROID__) delete(vulkanExample); return 0; #endif }