/* * Vulkan Example - Multi sampling with explicit resolve for deferred shading example * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // todo: check if hardware supports sample number (or select max. supported) #define SAMPLE_COUNT VK_SAMPLE_COUNT_8_BIT class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = false; bool useMSAA = true; bool useSampleShading = true; struct { struct { vks::Texture2D colorMap; vks::Texture2D normalMap; } model; struct { vks::Texture2D colorMap; vks::Texture2D normalMap; } floor; } textures; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_TANGENT, }); struct { vks::Model model; vks::Model floor; vks::Model quad; } models; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { glm::mat4 projection; glm::mat4 model; glm::mat4 view; glm::vec4 instancePos[3]; } uboVS, uboOffscreenVS; struct Light { glm::vec4 position; glm::vec3 color; float radius; }; struct { Light lights[6]; glm::vec4 viewPos; glm::ivec2 windowSize; } uboFragmentLights; struct { vks::Buffer vsFullScreen; vks::Buffer vsOffscreen; vks::Buffer fsLights; } uniformBuffers; struct { VkPipeline deferred; // Deferred lighting calculation VkPipeline deferredNoMSAA; // Deferred lighting calculation with explicit MSAA resolve VkPipeline offscreen; // (Offscreen) scene rendering (fill G-Buffers) VkPipeline offscreenSampleShading; // (Offscreen) scene rendering (fill G-Buffers) with sample shading rate enabled VkPipeline debug; // G-Buffers debug display } pipelines; struct { VkPipelineLayout deferred; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet model; VkDescriptorSet floor; } descriptorSets; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; VkFormat format; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment position, normal, albedo; FrameBufferAttachment depth; VkRenderPass renderPass; } offScreenFrameBuf; // One sampler for the frame buffer color attachments VkSampler colorSampler; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; // Semaphore used to synchronize between offscreen and final scene rendering VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Multi sampled deferred shading"; camera.type = Camera::CameraType::firstperson; camera.movementSpeed = 5.0f; #ifndef __ANDROID__ camera.rotationSpeed = 0.25f; #endif camera.position = { 2.15f, 0.3f, -8.75f }; camera.setRotation(glm::vec3(-0.75f, 12.5f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); paused = true; settings.overlay = true; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroySampler(device, colorSampler, nullptr); // Frame buffer // Color attachments vkDestroyImageView(device, offScreenFrameBuf.position.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.position.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.position.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.normal.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.normal.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.normal.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.albedo.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.albedo.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.albedo.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.deferred, nullptr); vkDestroyPipeline(device, pipelines.deferredNoMSAA, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.offscreenSampleShading, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes models.model.destroy(); models.floor.destroy(); // Uniform buffers uniformBuffers.vsOffscreen.destroy(); uniformBuffers.vsFullScreen.destroy(); uniformBuffers.fsLights.destroy(); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr); textures.model.colorMap.destroy(); textures.model.normalMap.destroy(); textures.floor.colorMap.destroy(); textures.floor.normalMap.destroy(); vkDestroySemaphore(device, offscreenSemaphore, nullptr); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Enable sample rate shading filtering if supported if (deviceFeatures.sampleRateShading) { enabledFeatures.sampleRateShading = VK_TRUE; } // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } // Enable texture compression if (deviceFeatures.textureCompressionBC) { enabledFeatures.textureCompressionBC = VK_TRUE; } else if (deviceFeatures.textureCompressionASTC_LDR) { enabledFeatures.textureCompressionASTC_LDR = VK_TRUE; } else if (deviceFeatures.textureCompressionETC2) { enabledFeatures.textureCompressionETC2 = VK_TRUE; } }; // Create a frame buffer attachment void createAttachment( VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment *attachment, VkCommandBuffer layoutCmd) { VkImageAspectFlags aspectMask = 0; VkImageLayout imageLayout; attachment->format = format; if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } assert(aspectMask > 0); VkImageCreateInfo image = vks::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = format; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = SAMPLE_COUNT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = usage | VK_IMAGE_USAGE_SAMPLED_BIT; VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image)); vkGetImageMemoryRequirements(device, attachment->image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem)); VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0)); VkImageViewCreateInfo imageView = vks::initializers::imageViewCreateInfo(); imageView.viewType = VK_IMAGE_VIEW_TYPE_2D; imageView.format = format; imageView.subresourceRange = {}; imageView.subresourceRange.aspectMask = aspectMask; imageView.subresourceRange.baseMipLevel = 0; imageView.subresourceRange.levelCount = 1; imageView.subresourceRange.baseArrayLayer = 0; imageView.subresourceRange.layerCount = 1; imageView.image = attachment->image; VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view)); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // blitted to our render target void prepareOffscreenFramebuffer() { VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); offScreenFrameBuf.width = this->width; offScreenFrameBuf.height = this->height; //offScreenFrameBuf.width = FB_DIM; //offScreenFrameBuf.height = FB_DIM; // Color attachments // (World space) Positions createAttachment( VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.position, layoutCmd); // (World space) Normals createAttachment( VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.normal, layoutCmd); // Albedo (color) createAttachment( VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.albedo, layoutCmd); // Depth attachment // Find a suitable depth format VkFormat attDepthFormat; VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &attDepthFormat); assert(validDepthFormat); createAttachment( attDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &offScreenFrameBuf.depth, layoutCmd); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); // Set up separate renderpass with references // to the color and depth attachments std::array attachmentDescs = {}; // Init attachment properties for (uint32_t i = 0; i < 4; ++i) { attachmentDescs[i].samples = SAMPLE_COUNT; attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; if (i == 3) { attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } else { attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } } // Formats attachmentDescs[0].format = offScreenFrameBuf.position.format; attachmentDescs[1].format = offScreenFrameBuf.normal.format; attachmentDescs[2].format = offScreenFrameBuf.albedo.format; attachmentDescs[3].format = offScreenFrameBuf.depth.format; std::vector colorReferences; colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); colorReferences.push_back({ 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); VkAttachmentReference depthReference = {}; depthReference.attachment = 3; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.pColorAttachments = colorReferences.data(); subpass.colorAttachmentCount = static_cast(colorReferences.size()); subpass.pDepthStencilAttachment = &depthReference; // Use subpass dependencies for attachment layput transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.pAttachments = attachmentDescs.data(); renderPassInfo.attachmentCount = static_cast(attachmentDescs.size()); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 2; renderPassInfo.pDependencies = dependencies.data(); VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offScreenFrameBuf.renderPass)); std::array attachments; attachments[0] = offScreenFrameBuf.position.view; attachments[1] = offScreenFrameBuf.normal.view; attachments[2] = offScreenFrameBuf.albedo.view; attachments[3] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = {}; fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbufCreateInfo.pNext = NULL; fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass; fbufCreateInfo.pAttachments = attachments.data(); fbufCreateInfo.attachmentCount = static_cast(attachments.size()); fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer)); // Create sampler to sample from the color attachments VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_NEAREST; sampler.minFilter = VK_FILTER_NEAREST; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 1.0f; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &colorSampler)); } // Build command buffer for rendering the scene to the offscreen frame buffer attachments void buildDeferredCommandBuffer() { if (offScreenCmdBuffer == VK_NULL_HANDLE) { offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); // Clear values for all attachments written in the fragment sahder std::array clearValues; clearValues[0].color = clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[3].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = static_cast(clearValues.size()); renderPassBeginInfo.pClearValues = clearValues.data(); VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo)); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, useSampleShading ? pipelines.offscreenSampleShading : pipelines.offscreen); VkDeviceSize offsets[1] = { 0 }; // Background vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.floor, 0, NULL); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.floor.vertices.buffer, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, models.floor.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, models.floor.indexCount, 1, 0, 0, 0); // Object vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.model, 0, NULL); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &models.model.vertices.buffer, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, models.model.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, models.model.indexCount, 3, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer)); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL); if (debugDisplay) { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0); // Move viewport to display final composition in lower right corner viewport.x = viewport.width * 0.5f; viewport.y = viewport.height * 0.5f; viewport.width = (float)width * 0.5f; viewport.height = (float)height * 0.5f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); } camera.updateAspectRatio((float)viewport.width / (float)viewport.height); // Final composition as full screen quad vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, useMSAA ? pipelines.deferred : pipelines.deferredNoMSAA); vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { models.model.loadFromFile(getAssetPath() + "models/armor/armor.dae", vertexLayout, 1.0f, vulkanDevice, queue); vks::ModelCreateInfo modelCreateInfo; modelCreateInfo.scale = glm::vec3(15.0f); modelCreateInfo.uvscale = glm::vec2(8.0f, 8.0f); modelCreateInfo.center = glm::vec3(0.0f, 2.3f, 0.0f); models.floor.loadFromFile(getAssetPath() + "models/openbox.dae", vertexLayout, &modelCreateInfo, vulkanDevice, queue); // Textures std::string texFormatSuffix; VkFormat texFormat; // Get supported compressed texture format if (vulkanDevice->features.textureCompressionBC) { texFormatSuffix = "_bc3_unorm"; texFormat = VK_FORMAT_BC3_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionASTC_LDR) { texFormatSuffix = "_astc_8x8_unorm"; texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionETC2) { texFormatSuffix = "_etc2_unorm"; texFormat = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK; } else { vks::tools::exitFatal("Device does not support any compressed texture format!", "Error"); } textures.model.colorMap.loadFromFile(getAssetPath() + "models/armor/color" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.model.normalMap.loadFromFile(getAssetPath() + "models/armor/normal" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/stonefloor02_color" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/stonefloor02_normal" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(5); // Location 0: Position vertices.attributeDescriptions[0] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1: Texture coordinates vertices.attributeDescriptions[1] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2: Color vertices.attributeDescriptions[2] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3: Normal vertices.attributeDescriptions[3] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); // Location 4: Tangent vertices.attributeDescriptions[4] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 11); vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 9) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Deferred shading layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Position texture target / Scene colormap vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Normals texture target vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 3 : Albedo texture target vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), // Binding 4 : Fragment shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 4), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred)); // Offscreen (scene) rendering pipeline layout VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); } void setupDescriptorSet() { std::vector writeDescriptorSets; // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Image descriptors for the offscreen color attachments VkDescriptorImageInfo texDescriptorPosition = vks::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.position.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkDescriptorImageInfo texDescriptorNormal = vks::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.normal.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkDescriptorImageInfo texDescriptorAlbedo = vks::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.albedo.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsFullScreen.descriptor), // Binding 1 : Position texture target vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorPosition), // Binding 2 : Normals texture target vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormal), // Binding 3 : Albedo texture target vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorAlbedo), // Binding 4 : Fragment shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4, &uniformBuffers.fsLights.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Offscreen (scene) // Model VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsOffscreen.descriptor), // Binding 1: Color map vks::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.model.colorMap.descriptor), // Binding 2: Normal map vks::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.model.normalMap.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Backbround VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.floor)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsOffscreen.descriptor), // Binding 1: Color map vks::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor), // Binding 2: Normal map vks::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Final fullscreen pass pipeline std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayouts.deferred, renderPass, 0); pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); // Deferred // Empty vertex input state, quads are generated by the vertex shader VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); pipelineCreateInfo.pVertexInputState = &emptyInputState; pipelineCreateInfo.layout = pipelineLayouts.deferred; // Use specialization constants to pass number of samples to the shader (used for MSAA resolve) VkSpecializationMapEntry specializationEntry{}; specializationEntry.constantID = 0; specializationEntry.offset = 0; specializationEntry.size = sizeof(uint32_t); uint32_t specializationData = SAMPLE_COUNT; VkSpecializationInfo specializationInfo; specializationInfo.mapEntryCount = 1; specializationInfo.pMapEntries = &specializationEntry; specializationInfo.dataSize = sizeof(specializationData); specializationInfo.pData = &specializationData; // With MSAA shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredmultisampling/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredmultisampling/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shaderStages[1].pSpecializationInfo = &specializationInfo; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred)); // No MSAA (1 sample) specializationData = 1; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferredNoMSAA)); // Debug display pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredmultisampling/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredmultisampling/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug)); // Offscreen scene rendering pipeline pipelineCreateInfo.pVertexInputState = &vertices.inputState; shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredmultisampling/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredmultisampling/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); //rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; //rasterizationState.lineWidth = 2.0f; multisampleState.rasterizationSamples = SAMPLE_COUNT; multisampleState.alphaToCoverageEnable = VK_TRUE; // Separate render pass pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass; // Separate layout pipelineCreateInfo.layout = pipelineLayouts.offscreen; // Blend attachment states required for all color attachments // This is important, as color write mask will otherwise be 0x0 and you // won't see anything rendered to the attachment std::array blendAttachmentStates = { vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE) }; colorBlendState.attachmentCount = static_cast(blendAttachmentStates.size()); colorBlendState.pAttachments = blendAttachmentStates.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen)); multisampleState.sampleShadingEnable = VK_TRUE; multisampleState.minSampleShading = 0.25f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreenSampleShading)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Fullscreen vertex shader VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsFullScreen, sizeof(uboVS))); // Deferred vertex shader VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsOffscreen, sizeof(uboOffscreenVS))); // Deferred fragment shader VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.fsLights, sizeof(uboFragmentLights))); // Map persistent VK_CHECK_RESULT(uniformBuffers.vsFullScreen.map()); VK_CHECK_RESULT(uniformBuffers.vsOffscreen.map()); VK_CHECK_RESULT(uniformBuffers.fsLights.map()); // Init some values uboOffscreenVS.instancePos[0] = glm::vec4(0.0f); uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f); uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f); // Update updateUniformBuffersScreen(); updateUniformBufferDeferredMatrices(); updateUniformBufferDeferredLights(); } void updateUniformBuffersScreen() { if (debugDisplay) { uboVS.projection = glm::ortho(0.0f, 2.0f, 0.0f, 2.0f, -1.0f, 1.0f); } else { uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); } uboVS.model = glm::mat4(1.0f); memcpy(uniformBuffers.vsFullScreen.mapped, &uboVS, sizeof(uboVS)); } void updateUniformBufferDeferredMatrices() { uboOffscreenVS.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f); uboOffscreenVS.view = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, zoom)); uboOffscreenVS.model = glm::mat4(1.0f); uboOffscreenVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.25f, 0.0f) + cameraPos); uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboOffscreenVS.projection = camera.matrices.perspective; uboOffscreenVS.view = camera.matrices.view; uboOffscreenVS.model = glm::mat4(1.0f); memcpy(uniformBuffers.vsOffscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS)); } // Update fragment shader light position uniform block void updateUniformBufferDeferredLights() { // White uboFragmentLights.lights[0].position = glm::vec4(0.0f, 0.0f, 1.0f, 0.0f); uboFragmentLights.lights[0].color = glm::vec3(1.5f); uboFragmentLights.lights[0].radius = 15.0f * 0.25f; // Red uboFragmentLights.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f); uboFragmentLights.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f); uboFragmentLights.lights[1].radius = 15.0f; // Blue uboFragmentLights.lights[2].position = glm::vec4(2.0f, 1.0f, 0.0f, 0.0f); uboFragmentLights.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f); uboFragmentLights.lights[2].radius = 5.0f; // Yellow uboFragmentLights.lights[3].position = glm::vec4(0.0f, 0.9f, 0.5f, 0.0f); uboFragmentLights.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f); uboFragmentLights.lights[3].radius = 2.0f; // Green uboFragmentLights.lights[4].position = glm::vec4(0.0f, 0.5f, 0.0f, 0.0f); uboFragmentLights.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f); uboFragmentLights.lights[4].radius = 5.0f; // Yellow uboFragmentLights.lights[5].position = glm::vec4(0.0f, 1.0f, 0.0f, 0.0f); uboFragmentLights.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f); uboFragmentLights.lights[5].radius = 25.0f; uboFragmentLights.lights[0].position.x = sin(glm::radians(360.0f * timer)) * 5.0f; uboFragmentLights.lights[0].position.z = cos(glm::radians(360.0f * timer)) * 5.0f; uboFragmentLights.lights[1].position.x = -4.0f + sin(glm::radians(360.0f * timer) + 45.0f) * 2.0f; uboFragmentLights.lights[1].position.z = 0.0f + cos(glm::radians(360.0f * timer) + 45.0f) * 2.0f; uboFragmentLights.lights[2].position.x = 4.0f + sin(glm::radians(360.0f * timer)) * 2.0f; uboFragmentLights.lights[2].position.z = 0.0f + cos(glm::radians(360.0f * timer)) * 2.0f; uboFragmentLights.lights[4].position.x = 0.0f + sin(glm::radians(360.0f * timer + 90.0f)) * 5.0f; uboFragmentLights.lights[4].position.z = 0.0f - cos(glm::radians(360.0f * timer + 45.0f)) * 5.0f; uboFragmentLights.lights[5].position.x = 0.0f + sin(glm::radians(-360.0f * timer + 135.0f)) * 10.0f; uboFragmentLights.lights[5].position.z = 0.0f - cos(glm::radians(-360.0f * timer - 45.0f)) * 10.0f; // Current view position uboFragmentLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f); memcpy(uniformBuffers.fsLights.mapped, &uboFragmentLights, sizeof(uboFragmentLights)); } void draw() { VulkanExampleBase::prepareFrame(); // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &offScreenCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); setupVertexDescriptions(); prepareOffscreenFramebuffer(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); buildDeferredCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); updateUniformBufferDeferredLights(); } virtual void viewChanged() { updateUniformBufferDeferredMatrices(); uboFragmentLights.windowSize = glm::ivec2(width, height); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->checkBox("Display render targets", &debugDisplay)) { buildCommandBuffers(); updateUniformBuffersScreen(); } if (overlay->checkBox("MSAA", &useMSAA)) { buildCommandBuffers(); } if (vulkanDevice->features.sampleRateShading) { if (overlay->checkBox("Sample rate shading", &useSampleShading)) { buildDeferredCommandBuffer(); } } } } }; VULKAN_EXAMPLE_MAIN()