/* * Vulkan Example - Compute shader image processing * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float uv[2]; }; class VulkanExample : public VulkanExampleBase { private: vks::Texture2D textureColorMap; vks::Texture2D textureComputeTarget; public: struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; // Resources for the graphics part of the example struct { VkDescriptorSetLayout descriptorSetLayout; // Image display shader binding layout VkDescriptorSet descriptorSetPreCompute; // Image display shader bindings before compute shader image manipulation VkDescriptorSet descriptorSetPostCompute; // Image display shader bindings after compute shader image manipulation VkPipeline pipeline; // Image display pipeline VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline VkSemaphore semaphore; // Execution dependency between compute & graphic submission } graphics; // Resources for the compute part of the example struct Compute { VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics) VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics) VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers VkSemaphore semaphore; // Execution dependency between compute & graphic submission VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout VkDescriptorSet descriptorSet; // Compute shader bindings VkPipelineLayout pipelineLayout; // Layout of the compute pipeline std::vector pipelines; // Compute pipelines for image filters int32_t pipelineIndex = 0; // Current image filtering compute pipeline index } compute; vks::Buffer vertexBuffer; vks::Buffer indexBuffer; uint32_t indexCount; vks::Buffer uniformBufferVS; struct { glm::mat4 projection; glm::mat4 modelView; } uboVS; int vertexBufferSize; std::vector shaderNames; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Compute shader image load/store"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -2.0f)); camera.setRotation(glm::vec3(0.0f)); camera.setPerspective(60.0f, (float)width * 0.5f / (float)height, 1.0f, 256.0f); settings.overlay = true; } ~VulkanExample() { // Graphics vkDestroyPipeline(device, graphics.pipeline, nullptr); vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr); vkDestroySemaphore(device, graphics.semaphore, nullptr); // Compute for (auto& pipeline : compute.pipelines) { vkDestroyPipeline(device, pipeline, nullptr); } vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr); vkDestroySemaphore(device, compute.semaphore, nullptr); vkDestroyCommandPool(device, compute.commandPool, nullptr); vertexBuffer.destroy(); indexBuffer.destroy(); uniformBufferVS.destroy(); textureColorMap.destroy(); textureComputeTarget.destroy(); } // Prepare a texture target that is used to store compute shader calculations void prepareTextureTarget(vks::Texture *tex, uint32_t width, uint32_t height, VkFormat format) { VkFormatProperties formatProperties; // Get device properties for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Check if requested image format supports image storage operations assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT); // Prepare blit target texture tex->width = width; tex->height = height; VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { width, height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // Image will be sampled in the fragment shader and used as storage target in the compute shader imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT; imageCreateInfo.flags = 0; // If compute and graphics queue family indices differ, we create an image that can be shared between them // This can result in worse performance than exclusive sharing mode, but save some synchronization to keep the sample simple std::vector queueFamilyIndices; if (vulkanDevice->queueFamilyIndices.graphics != vulkanDevice->queueFamilyIndices.compute) { queueFamilyIndices = { vulkanDevice->queueFamilyIndices.graphics, vulkanDevice->queueFamilyIndices.compute }; imageCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT; imageCreateInfo.queueFamilyIndexCount = 2; imageCreateInfo.pQueueFamilyIndices = queueFamilyIndices.data(); } VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image)); vkGetImageMemoryRequirements(device, tex->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0)); VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); tex->imageLayout = VK_IMAGE_LAYOUT_GENERAL; vks::tools::setImageLayout( layoutCmd, tex->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, tex->imageLayout); vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 1.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = tex->mipLevels; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &tex->sampler)); // Create image view VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.image = tex->image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &tex->view)); // Initialize a descriptor for later use tex->descriptor.imageLayout = tex->imageLayout; tex->descriptor.imageView = tex->view; tex->descriptor.sampler = tex->sampler; tex->device = vulkanDevice; } void loadAssets() { textureColorMap.loadFromFile(getAssetPath() + "textures/vulkan_11_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT, VK_IMAGE_LAYOUT_GENERAL); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Image memory barrier to make sure that compute shader writes are finished before sampling from the texture VkImageMemoryBarrier imageMemoryBarrier = {}; imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; // We won't be changing the layout of the image imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL; imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; imageMemoryBarrier.image = textureComputeTarget.image; imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; imageMemoryBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageMemoryBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vkCmdPipelineBarrier( drawCmdBuffers[i], VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width * 0.5f, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); // Left (pre compute) vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSetPreCompute, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline); vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); // Right (post compute) vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSetPostCompute, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline); viewport.x = (float)width / 2.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void buildComputeCommandBuffer() { // Flush the queue if we're rebuilding the command buffer after a pipeline change to ensure it's not currently in use vkQueueWaitIdle(compute.queue); VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo)); vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelines[compute.pipelineIndex]); vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0); vkCmdDispatch(compute.commandBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1); vkEndCommandBuffer(compute.commandBuffer); } // Setup vertices for a single uv-mapped quad void generateQuad() { // Setup vertices for a single uv-mapped quad made from two triangles std::vector vertices = { { { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f } }, { { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f } }, { { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f } }, { { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f } } }; // Setup indices std::vector indices = { 0,1,2, 2,3,0 }; indexCount = static_cast(indices.size()); // Create buffers // For the sake of simplicity we won't stage the vertex data to the gpu memory // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex), vertices.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexBuffer, indices.size() * sizeof(uint32_t), indices.data())); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions = { vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX) }; // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions = { // Location 0: Position vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 1: Texture coordinates vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)), }; // Assign to vertex buffer vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { // Graphics pipelines uniform buffers vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), // Graphics pipelines image samplers for displaying compute output image vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2), // Compute pipelines uses a storage image for image reads and writes vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 2), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0: Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1: Fragment shader input image vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1); // Input image (before compute post processing) VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSetPreCompute)); std::vector baseImageWriteDescriptorSets = { vks::initializers::writeDescriptorSet(graphics.descriptorSetPreCompute, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), vks::initializers::writeDescriptorSet(graphics.descriptorSetPreCompute, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureColorMap.descriptor) }; vkUpdateDescriptorSets(device, baseImageWriteDescriptorSets.size(), baseImageWriteDescriptorSets.data(), 0, nullptr); // Final image (after compute shader processing) VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSetPostCompute)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(graphics.descriptorSetPostCompute, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), vks::initializers::writeDescriptorSet(graphics.descriptorSetPostCompute, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureComputeTarget.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getShadersPath() + "computeshader/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "computeshader/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( graphics.pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline)); } void prepareGraphics() { // Semaphore for compute & graphics sync VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &graphics.semaphore)); } void prepareCompute() { // Get a compute queue from the device vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue); // Create compute pipeline // Compute pipelines are created separate from graphics pipelines even if they use the same queue std::vector setLayoutBindings = { // Binding 0: Input image (read-only) vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0), // Binding 1: Output image (write) vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout)); VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet)); std::vector computeWriteDescriptorSets = { vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 0, &textureColorMap.descriptor), vks::initializers::writeDescriptorSet(compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &textureComputeTarget.descriptor) }; vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL); // Create compute shader pipelines VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0); // One pipeline for each effect shaderNames = { "emboss", "edgedetect", "sharpen" }; for (auto& shaderName : shaderNames) { std::string fileName = getShadersPath() + "computeshader/" + shaderName + ".comp.spv"; computePipelineCreateInfo.stage = loadShader(fileName, VK_SHADER_STAGE_COMPUTE_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipeline)); compute.pipelines.push_back(pipeline); } // Separate command pool as queue family for compute may be different than graphics VkCommandPoolCreateInfo cmdPoolInfo = {}; cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool)); // Create a command buffer for compute operations VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo( compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer)); // Semaphore for compute & graphics sync VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphore)); // Signal the semaphore VkSubmitInfo submitInfo = vks::initializers::submitInfo(); submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = &compute.semaphore; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); // Build a single command buffer containing the compute dispatch commands buildComputeCommandBuffer(); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS))); // Map persistent VK_CHECK_RESULT(uniformBufferVS.map()); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projection = camera.matrices.perspective; uboVS.modelView = camera.matrices.view; memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); } void draw() { VulkanExampleBase::prepareFrame(); VkPipelineStageFlags graphicsWaitStageMasks[] = { VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; VkSemaphore graphicsWaitSemaphores[] = { compute.semaphore, semaphores.presentComplete }; VkSemaphore graphicsSignalSemaphores[] = { graphics.semaphore, semaphores.renderComplete }; // Submit graphics commands submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; submitInfo.waitSemaphoreCount = 2; submitInfo.pWaitSemaphores = graphicsWaitSemaphores; submitInfo.pWaitDstStageMask = graphicsWaitStageMasks; submitInfo.signalSemaphoreCount = 2; submitInfo.pSignalSemaphores = graphicsSignalSemaphores; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); // Wait for rendering finished VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT; // Submit compute commands VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo(); computeSubmitInfo.commandBufferCount = 1; computeSubmitInfo.pCommandBuffers = &compute.commandBuffer; computeSubmitInfo.waitSemaphoreCount = 1; computeSubmitInfo.pWaitSemaphores = &graphics.semaphore; computeSubmitInfo.pWaitDstStageMask = &waitStageMask; computeSubmitInfo.signalSemaphoreCount = 1; computeSubmitInfo.pSignalSemaphores = &compute.semaphore; VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE)); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); generateQuad(); setupVertexDescriptions(); prepareUniformBuffers(); prepareTextureTarget(&textureComputeTarget, textureColorMap.width, textureColorMap.height, VK_FORMAT_R8G8B8A8_UNORM); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); prepareGraphics(); prepareCompute(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (camera.updated) { updateUniformBuffers(); } } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->comboBox("Shader", &compute.pipelineIndex, shaderNames)) { buildComputeCommandBuffer(); } } } }; VULKAN_EXAMPLE_MAIN()