/* * Vulkan Example - Shader specialization constants * * This samples uses specialization constants to define shader constants at pipeline creation * These are used to compile shaders with different execution paths and settings * With these constants one can create different shader configurations from a single shader file * See uber.frag for how such a shader can look * * For details see https://www.khronos.org/registry/vulkan/specs/misc/GL_KHR_vulkan_glsl.txt * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" class VulkanExample: public VulkanExampleBase { public: vkglTF::Model scene; vks::Texture2D colormap; struct UniformData { glm::mat4 projection; glm::mat4 modelView; glm::vec4 lightPos{ 0.0f, -2.0f, 1.0f, 0.0f }; } uniformData; vks::Buffer uniformBuffer; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; struct Pipelines{ VkPipeline phong{ VK_NULL_HANDLE }; VkPipeline toon{ VK_NULL_HANDLE }; VkPipeline textured{ VK_NULL_HANDLE }; } pipelines; VulkanExample() : VulkanExampleBase() { title = "Specialization constants"; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, ((float)width / 3.0f) / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(-40.0f, -90.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -2.0f)); #if defined(VK_USE_PLATFORM_MACOS_MVK) // SRS - on macOS set environment variable to ensure MoltenVK disables Metal argument buffers for this example setenv("MVK_CONFIG_USE_METAL_ARGUMENT_BUFFERS", "0", 1); #endif } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipelines.phong, nullptr); vkDestroyPipeline(device, pipelines.textured, nullptr); vkDestroyPipeline(device, pipelines.toon, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); colormap.destroy(); uniformBuffer.destroy(); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); // Left VkViewport viewport = vks::initializers::viewport((float) width / 3.0f, (float) height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong); scene.draw(drawCmdBuffers[i]); // Center viewport.x = (float)width / 3.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.toon); scene.draw(drawCmdBuffers[i]); // Right viewport.x = (float)width / 3.0f + (float)width / 3.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.textured); scene.draw(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { scene.loadFromFile(getAssetPath() + "models/color_teapot_spheres.gltf", vulkanDevice, queue , vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY); colormap.loadFromFile(getAssetPath() + "textures/metalplate_nomips_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor), vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &colormap.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { // Layout VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color }); // Prepare specialization constants data // Host data to take specialization constants from struct SpecializationData { // Sets the lighting model used in the fragment "uber" shader uint32_t lightingModel{ 0 }; // Parameter for the toon shading part of the fragment shader float toonDesaturationFactor{ 0.5f }; } specializationData; // Each shader constant of a shader stage corresponds to one map entry std::array specializationMapEntries; // Shader bindings based on specialization constants are marked by the new "constant_id" layout qualifier: // layout (constant_id = 0) const int LIGHTING_MODEL = 0; // layout (constant_id = 1) const float PARAM_TOON_DESATURATION = 0.0f; // Map entry for the lighting model to be used by the fragment shader specializationMapEntries[0].constantID = 0; specializationMapEntries[0].size = sizeof(specializationData.lightingModel); specializationMapEntries[0].offset = 0; // Map entry for the toon shader parameter specializationMapEntries[1].constantID = 1; specializationMapEntries[1].size = sizeof(specializationData.toonDesaturationFactor); specializationMapEntries[1].offset = offsetof(SpecializationData, toonDesaturationFactor); // Prepare specialization info block for the shader stage VkSpecializationInfo specializationInfo{}; specializationInfo.dataSize = sizeof(specializationData); specializationInfo.mapEntryCount = static_cast(specializationMapEntries.size()); specializationInfo.pMapEntries = specializationMapEntries.data(); specializationInfo.pData = &specializationData; // Create pipelines // All pipelines will use the same "uber" shader and specialization constants to change branching and parameters of that shader shaderStages[0] = loadShader(getShadersPath() + "specializationconstants/uber.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "specializationconstants/uber.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Specialization info is assigned is part of the shader stage (modul) and must be set after creating the module and before creating the pipeline shaderStages[1].pSpecializationInfo = &specializationInfo; // Solid phong shading specializationData.lightingModel = 0; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.phong)); // Phong and textured specializationData.lightingModel = 1; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.toon)); // Textured discard specializationData.lightingModel = 2; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.textured)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Create the vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData))); VK_CHECK_RESULT(uniformBuffer.map()); } void updateUniformBuffers() { camera.setPerspective(60.0f, ((float)width / 3.0f) / (float)height, 0.1f, 512.0f); uniformData.projection = camera.matrices.perspective; uniformData.modelView = camera.matrices.view; memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData)); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) { return; } updateUniformBuffers(); draw(); } }; VULKAN_EXAMPLE_MAIN()