/* * Vulkan Example - Scene rendering * * Copyright (C) 2020-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) * * Summary: * Render a complete scene loaded from an glTF file. The sample is based on the glTF model loading sample, * and adds data structures, functions and shaders required to render a more complex scene using Crytek's Sponza model. * * This sample comes with a tutorial, see the README.md in this folder */ #include "gltfscenerendering.h" /* Vulkan glTF scene class */ VulkanglTFScene::~VulkanglTFScene() { for (auto node : nodes) { delete node; } // Release all Vulkan resources allocated for the model vkDestroyBuffer(vulkanDevice->logicalDevice, vertices.buffer, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, vertices.memory, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, indices.buffer, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, indices.memory, nullptr); for (Image image : images) { vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); } for (Material material : materials) { vkDestroyPipeline(vulkanDevice->logicalDevice, material.pipeline, nullptr); } } /* glTF loading functions The following functions take a glTF input model loaded via tinyglTF and convert all required data into our own structure */ void VulkanglTFScene::loadImages(tinygltf::Model& input) { // POI: The textures for the glTF file used in this sample are stored as external ktx files, so we can directly load them from disk without the need for conversion images.resize(input.images.size()); for (size_t i = 0; i < input.images.size(); i++) { tinygltf::Image& glTFImage = input.images[i]; images[i].texture.loadFromFile(path + "/" + glTFImage.uri, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, copyQueue); } } void VulkanglTFScene::loadTextures(tinygltf::Model& input) { textures.resize(input.textures.size()); for (size_t i = 0; i < input.textures.size(); i++) { textures[i].imageIndex = input.textures[i].source; } } void VulkanglTFScene::loadMaterials(tinygltf::Model& input) { materials.resize(input.materials.size()); for (size_t i = 0; i < input.materials.size(); i++) { // We only read the most basic properties required for our sample tinygltf::Material glTFMaterial = input.materials[i]; // Get the base color factor if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); } // Get base color texture index if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); } // Get the normal map texture index if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) { materials[i].normalTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex(); } // Get some additional material parameters that are used in this sample materials[i].alphaMode = glTFMaterial.alphaMode; materials[i].alphaCutOff = (float)glTFMaterial.alphaCutoff; materials[i].doubleSided = glTFMaterial.doubleSided; } } void VulkanglTFScene::loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector& indexBuffer, std::vector& vertexBuffer) { VulkanglTFScene::Node* node = new VulkanglTFScene::Node{}; node->name = inputNode.name; node->parent = parent; // Get the local node matrix // It's either made up from translation, rotation, scale or a 4x4 matrix node->matrix = glm::mat4(1.0f); if (inputNode.translation.size() == 3) { node->matrix = glm::translate(node->matrix, glm::vec3(glm::make_vec3(inputNode.translation.data()))); } if (inputNode.rotation.size() == 4) { glm::quat q = glm::make_quat(inputNode.rotation.data()); node->matrix *= glm::mat4(q); } if (inputNode.scale.size() == 3) { node->matrix = glm::scale(node->matrix, glm::vec3(glm::make_vec3(inputNode.scale.data()))); } if (inputNode.matrix.size() == 16) { node->matrix = glm::make_mat4x4(inputNode.matrix.data()); }; // Load node's children if (inputNode.children.size() > 0) { for (size_t i = 0; i < inputNode.children.size(); i++) { loadNode(input.nodes[inputNode.children[i]], input, node, indexBuffer, vertexBuffer); } } // If the node contains mesh data, we load vertices and indices from the buffers // In glTF this is done via accessors and buffer views if (inputNode.mesh > -1) { const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; // Iterate through all primitives of this node's mesh for (size_t i = 0; i < mesh.primitives.size(); i++) { const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i]; uint32_t firstIndex = static_cast(indexBuffer.size()); uint32_t vertexStart = static_cast(vertexBuffer.size()); uint32_t indexCount = 0; // Vertices { const float* positionBuffer = nullptr; const float* normalsBuffer = nullptr; const float* texCoordsBuffer = nullptr; const float* tangentsBuffer = nullptr; size_t vertexCount = 0; // Get buffer data for vertex normals if (glTFPrimitive.attributes.find("POSITION") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("POSITION")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; positionBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); vertexCount = accessor.count; } // Get buffer data for vertex normals if (glTFPrimitive.attributes.find("NORMAL") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("NORMAL")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; normalsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // Get buffer data for vertex texture coordinates // glTF supports multiple sets, we only load the first one if (glTFPrimitive.attributes.find("TEXCOORD_0") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TEXCOORD_0")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; texCoordsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // POI: This sample uses normal mapping, so we also need to load the tangents from the glTF file if (glTFPrimitive.attributes.find("TANGENT") != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find("TANGENT")->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; tangentsBuffer = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); } // Append data to model's vertex buffer for (size_t v = 0; v < vertexCount; v++) { Vertex vert{}; vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); vert.color = glm::vec3(1.0f); vert.tangent = tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f); vertexBuffer.push_back(vert); } } // Indices { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices]; const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; indexCount += static_cast(accessor.count); // glTF supports different component types of indices switch (accessor.componentType) { case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { const uint32_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: { const uint16_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { const uint8_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } default: std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl; return; } } Primitive primitive{}; primitive.firstIndex = firstIndex; primitive.indexCount = indexCount; primitive.materialIndex = glTFPrimitive.material; node->mesh.primitives.push_back(primitive); } } if (parent) { parent->children.push_back(node); } else { nodes.push_back(node); } } VkDescriptorImageInfo VulkanglTFScene::getTextureDescriptor(const size_t index) { return images[index].texture.descriptor; } /* glTF rendering functions */ // Draw a single node including child nodes (if present) void VulkanglTFScene::drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node* node) { if (!node->visible) { return; } if (node->mesh.primitives.size() > 0) { // Pass the node's matrix via push constants // Traverse the node hierarchy to the top-most parent to get the final matrix of the current node glm::mat4 nodeMatrix = node->matrix; VulkanglTFScene::Node* currentParent = node->parent; while (currentParent) { nodeMatrix = currentParent->matrix * nodeMatrix; currentParent = currentParent->parent; } // Pass the final matrix to the vertex shader using push constants vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &nodeMatrix); for (VulkanglTFScene::Primitive& primitive : node->mesh.primitives) { if (primitive.indexCount > 0) { VulkanglTFScene::Material& material = materials[primitive.materialIndex]; // POI: Bind the pipeline for the node's material vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, material.pipeline); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &material.descriptorSet, 0, nullptr); vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); } } } for (auto& child : node->children) { drawNode(commandBuffer, pipelineLayout, child); } } // Draw the glTF scene starting at the top-level-nodes void VulkanglTFScene::draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout) { // All vertices and indices are stored in single buffers, so we only need to bind once VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertices.buffer, offsets); vkCmdBindIndexBuffer(commandBuffer, indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Render all nodes at top-level for (auto& node : nodes) { drawNode(commandBuffer, pipelineLayout, node); } } /* Vulkan Example class */ VulkanExample::VulkanExample() : VulkanExampleBase() { title = "glTF scene rendering"; camera.type = Camera::CameraType::firstperson; camera.flipY = true; camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f)); camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } VulkanExample::~VulkanExample() { if (device) { vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); shaderData.buffer.destroy(); } } void VulkanExample::getEnabledFeatures() { enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy; } void VulkanExample::buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Bind scene matrices descriptor to set 0 vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); // POI: Draw the glTF scene glTFScene.draw(drawCmdBuffers[i], pipelineLayout); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void VulkanExample::loadglTFFile(std::string filename) { tinygltf::Model glTFInput; tinygltf::TinyGLTF gltfContext; std::string error, warning; this->device = device; #if defined(__ANDROID__) // On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager // We let tinygltf handle this, by passing the asset manager of our app tinygltf::asset_manager = androidApp->activity->assetManager; #endif bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); // Pass some Vulkan resources required for setup and rendering to the glTF model loading class glTFScene.vulkanDevice = vulkanDevice; glTFScene.copyQueue = queue; size_t pos = filename.find_last_of('/'); glTFScene.path = filename.substr(0, pos); std::vector indexBuffer; std::vector vertexBuffer; if (fileLoaded) { glTFScene.loadImages(glTFInput); glTFScene.loadMaterials(glTFInput); glTFScene.loadTextures(glTFInput); const tinygltf::Scene& scene = glTFInput.scenes[0]; for (size_t i = 0; i < scene.nodes.size(); i++) { const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; glTFScene.loadNode(node, glTFInput, nullptr, indexBuffer, vertexBuffer); } } else { vks::tools::exitFatal("Could not open the glTF file.\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1); return; } // Create and upload vertex and index buffer // We will be using one single vertex buffer and one single index buffer for the whole glTF scene // Primitives (of the glTF model) will then index into these using index offsets size_t vertexBufferSize = vertexBuffer.size() * sizeof(VulkanglTFScene::Vertex); size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); glTFScene.indices.count = static_cast(indexBuffer.size()); struct StagingBuffer { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create host visible staging buffers (source) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBufferSize, &vertexStaging.buffer, &vertexStaging.memory, vertexBuffer.data())); // Index data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBufferSize, &indexStaging.buffer, &indexStaging.memory, indexBuffer.data())); // Create device local buffers (target) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, &glTFScene.vertices.buffer, &glTFScene.vertices.memory)); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, &glTFScene.indices.buffer, &glTFScene.indices.memory)); // Copy data from staging buffers (host) do device local buffer (gpu) VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, glTFScene.vertices.buffer, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, glTFScene.indices.buffer, 1, ©Region); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); // Free staging resources vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); } void VulkanExample::loadAssets() { loadglTFFile(getAssetPath() + "models/sponza/sponza.gltf"); } void VulkanExample::setupDescriptors() { /* This sample uses separate descriptor sets (and layouts) for the matrices and materials (textures) */ // One ubo to pass dynamic data to the shader // Two combined image samplers per material as each material uses color and normal maps std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(glTFScene.materials.size()) * 2), }; // One set for matrices and one per model image/texture const uint32_t maxSetCount = static_cast(glTFScene.images.size()) + 1; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor set layout for passing matrices std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0) }; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); // Descriptor set layout for passing material textures setLayoutBindings = { // Color map vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), // Normal map vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; descriptorSetLayoutCI.pBindings = setLayoutBindings.data(); descriptorSetLayoutCI.bindingCount = 2; VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); // Descriptor set for scene matrices VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); // Descriptor sets for materials for (auto& material : glTFScene.materials) { const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.descriptorSet)); VkDescriptorImageInfo colorMap = glTFScene.getTextureDescriptor(material.baseColorTextureIndex); VkDescriptorImageInfo normalMap = glTFScene.getTextureDescriptor(material.normalTextureIndex); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorMap), vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &normalMap), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } } void VulkanExample::preparePipelines() { // Layout // Pipeline layout uses both descriptor sets (set 0 = matrices, set 1 = material) std::array setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); // We will use push constants to push the local matrices of a primitive to the vertex shader VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); // Push constant ranges are part of the pipeline layout pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); // Pipelines VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); std::array shaderStages; const std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(VulkanglTFScene::Vertex), VK_VERTEX_INPUT_RATE_VERTEX), }; const std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, pos)), vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, normal)), vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, uv)), vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, color)), vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(VulkanglTFScene::Vertex, tangent)), }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindings, vertexInputAttributes); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pVertexInputState = &vertexInputStateCI; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); shaderStages[0] = loadShader(getShadersPath() + "gltfscenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "gltfscenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // POI: Instead if using a few fixed pipelines, we create one pipeline for each material using the properties of that material for (auto &material : glTFScene.materials) { struct MaterialSpecializationData { VkBool32 alphaMask; float alphaMaskCutoff; } materialSpecializationData; materialSpecializationData.alphaMask = material.alphaMode == "MASK"; materialSpecializationData.alphaMaskCutoff = material.alphaCutOff; // POI: Constant fragment shader material parameters will be set using specialization constants std::vector specializationMapEntries = { vks::initializers::specializationMapEntry(0, offsetof(MaterialSpecializationData, alphaMask), sizeof(MaterialSpecializationData::alphaMask)), vks::initializers::specializationMapEntry(1, offsetof(MaterialSpecializationData, alphaMaskCutoff), sizeof(MaterialSpecializationData::alphaMaskCutoff)), }; VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(specializationMapEntries, sizeof(materialSpecializationData), &materialSpecializationData); shaderStages[1].pSpecializationInfo = &specializationInfo; // For double sided materials, culling will be disabled rasterizationStateCI.cullMode = material.doubleSided ? VK_CULL_MODE_NONE : VK_CULL_MODE_BACK_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &material.pipeline)); } } void VulkanExample::prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values))); VK_CHECK_RESULT(shaderData.buffer.map()); } void VulkanExample::updateUniformBuffers() { shaderData.values.projection = camera.matrices.perspective; shaderData.values.view = camera.matrices.view; shaderData.values.viewPos = camera.viewPos; memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); } void VulkanExample::prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void VulkanExample::render() { updateUniformBuffers(); renderFrame(); } void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay) { if (overlay->header("Visibility")) { if (overlay->button("All")) { std::for_each(glTFScene.nodes.begin(), glTFScene.nodes.end(), [](VulkanglTFScene::Node* node) { node->visible = true; }); buildCommandBuffers(); } ImGui::SameLine(); if (overlay->button("None")) { std::for_each(glTFScene.nodes.begin(), glTFScene.nodes.end(), [](VulkanglTFScene::Node* node) { node->visible = false; }); buildCommandBuffers(); } ImGui::NewLine(); // POI: Create a list of glTF nodes for visibility toggle ImGui::BeginChild("#nodelist", ImVec2(200.0f * overlay->scale, 340.0f * overlay->scale), false); for (auto& node : glTFScene.nodes) { if (overlay->checkBox(node->name.c_str(), &node->visible)) { buildCommandBuffers(); } } ImGui::EndChild(); } } VULKAN_EXAMPLE_MAIN()