// Copyright 2020 Google LLC struct UBO { float4x4 projection; float4x4 modelview; float4 lightPos; float4 frustumPlanes[6]; float displacementFactor; float tessellationFactor; float2 viewportDim; float tessellatedEdgeSize; }; cbuffer ubo : register(b0) { UBO ubo; }; Texture2D textureHeight : register(t1); SamplerState samplerHeight : register(s1); struct VSOutput { float4 Pos : SV_POSITION; [[vk::location(0)]] float3 Normal : NORMAL0; [[vk::location(1)]] float2 UV : TEXCOORD0; }; struct HSOutput { [[vk::location(2)]] float4 Pos : SV_POSITION; [[vk::location(0)]] float3 Normal : NORMAL0; [[vk::location(1)]] float2 UV : TEXCOORD0; }; struct ConstantsHSOutput { float TessLevelOuter[4] : SV_TessFactor; float TessLevelInner[2] : SV_InsideTessFactor; }; // Calculate the tessellation factor based on screen space // dimensions of the edge float screenSpaceTessFactor(float4 p0, float4 p1) { // Calculate edge mid point float4 midPoint = 0.5 * (p0 + p1); // Sphere radius as distance between the control points float radius = distance(p0, p1) / 2.0; // View space float4 v0 = mul(ubo.modelview, midPoint); // Project into clip space float4 clip0 = mul(ubo.projection, (v0 - float4(radius, float3(0.0, 0.0, 0.0)))); float4 clip1 = mul(ubo.projection, (v0 + float4(radius, float3(0.0, 0.0, 0.0)))); // Get normalized device coordinates clip0 /= clip0.w; clip1 /= clip1.w; // Convert to viewport coordinates clip0.xy *= ubo.viewportDim; clip1.xy *= ubo.viewportDim; // Return the tessellation factor based on the screen size // given by the distance of the two edge control points in screen space // and a reference (min.) tessellation size for the edge set by the application return clamp(distance(clip0, clip1) / ubo.tessellatedEdgeSize * ubo.tessellationFactor, 1.0, 64.0); } // Checks the current's patch visibility against the frustum using a sphere check // Sphere radius is given by the patch size bool frustumCheck(float4 Pos, float2 inUV) { // Fixed radius (increase if patch size is increased in example) const float radius = 8.0f; float4 pos = Pos; pos.y -= textureHeight.SampleLevel(samplerHeight, inUV, 0.0).r * ubo.displacementFactor; // Check sphere against frustum planes for (int i = 0; i < 6; i++) { if (dot(pos, ubo.frustumPlanes[i]) + radius < 0.0) { return false; } } return true; } ConstantsHSOutput ConstantsHS(InputPatch patch) { ConstantsHSOutput output = (ConstantsHSOutput)0; if (!frustumCheck(patch[0].Pos, patch[0].UV)) { output.TessLevelInner[0] = 0.0; output.TessLevelInner[1] = 0.0; output.TessLevelOuter[0] = 0.0; output.TessLevelOuter[1] = 0.0; output.TessLevelOuter[2] = 0.0; output.TessLevelOuter[3] = 0.0; } else { if (ubo.tessellationFactor > 0.0) { output.TessLevelOuter[0] = screenSpaceTessFactor(patch[3].Pos, patch[0].Pos); output.TessLevelOuter[1] = screenSpaceTessFactor(patch[0].Pos, patch[1].Pos); output.TessLevelOuter[2] = screenSpaceTessFactor(patch[1].Pos, patch[2].Pos); output.TessLevelOuter[3] = screenSpaceTessFactor(patch[2].Pos, patch[3].Pos); output.TessLevelInner[0] = lerp(output.TessLevelOuter[0], output.TessLevelOuter[3], 0.5); output.TessLevelInner[1] = lerp(output.TessLevelOuter[2], output.TessLevelOuter[1], 0.5); } else { // Tessellation factor can be set to zero by example // to demonstrate a simple passthrough output.TessLevelInner[0] = 1.0; output.TessLevelInner[1] = 1.0; output.TessLevelOuter[0] = 1.0; output.TessLevelOuter[1] = 1.0; output.TessLevelOuter[2] = 1.0; output.TessLevelOuter[3] = 1.0; } } return output; } [domain("quad")] [partitioning("integer")] [outputtopology("triangle_cw")] [outputcontrolpoints(4)] [patchconstantfunc("ConstantsHS")] [maxtessfactor(20.0f)] HSOutput main(InputPatch patch, uint InvocationID : SV_OutputControlPointID) { HSOutput output = (HSOutput)0; output.Pos = patch[InvocationID].Pos; output.Normal = patch[InvocationID].Normal; output.UV = patch[InvocationID].UV; return output; }