/* Copyright (c) 2025, Sascha Willems * * SPDX-License-Identifier: MIT * */ RaytracingAccelerationStructure accelStruct; RWTexture2D image; struct CameraProperties { float4x4 viewInverse; float4x4 projInverse; float4 lightPos; int vertexSize; }; ConstantBuffer ubo; StructuredBuffer vertices; StructuredBuffer indices; // Max. number of recursion is passed via a specialization constant [SpecializationConstant] const int MAX_RECURSION = 0; struct Attributes { float2 bary; }; struct RayPayload { float3 color; float distance; float3 normal; float reflector; }; struct Vertex { float3 pos; float3 normal; float2 uv; float4 color; float4 _pad0; float4 _pad1; }; Vertex unpack(uint index) { // Unpack the vertices from the SSBO using the glTF vertex structure // The multiplier is the size of the vertex divided by four float components (=16 bytes) const int m = ubo.vertexSize / 16; float4 d0 = vertices[m * index + 0]; float4 d1 = vertices[m * index + 1]; float4 d2 = vertices[m * index + 2]; Vertex v; v.pos = d0.xyz; v.normal = float3(d0.w, d1.x, d1.y); v.color = float4(d2.x, d2.y, d2.z, 1.0); return v; } [shader("raygeneration")] void raygenerationMain() { uint3 LaunchID = DispatchRaysIndex(); uint3 LaunchSize = DispatchRaysDimensions(); const float2 pixelCenter = float2(LaunchID.xy) + float2(0.5, 0.5); const float2 inUV = pixelCenter / float2(LaunchSize.xy); float2 d = inUV * 2.0 - 1.0; float4 target = mul(ubo.projInverse, float4(d.x, d.y, 1, 1)); RayDesc rayDesc; rayDesc.Origin = mul(ubo.viewInverse, float4(0, 0, 0, 1)).xyz; rayDesc.Direction = mul(ubo.viewInverse, float4(normalize(target.xyz), 0)).xyz; rayDesc.TMin = 0.001; rayDesc.TMax = 10000.0; float3 color = float3(0.0, 0.0, 0.0); for (int i = 0; i < MAX_RECURSION; i++) { RayPayload rayPayload; TraceRay(accelStruct, RAY_FLAG_FORCE_OPAQUE, 0xff, 0, 0, 0, rayDesc, rayPayload); float3 hitColor = rayPayload.color; if (rayPayload.distance < 0.0f) { color += hitColor; break; } else if (rayPayload.reflector == 1.0f) { const float3 hitPos = rayDesc.Origin + rayDesc.Direction * rayPayload.distance; rayDesc.Origin = hitPos + rayPayload.normal * 0.001f; rayDesc.Direction = reflect(rayDesc.Direction, rayPayload.normal); } else { color += hitColor; break; } } image[int2(LaunchID.xy)] = float4(color, 0.0); } [shader("closesthit")] void closesthitMain(inout RayPayload rayPayload, in Attributes attribs) { uint PrimitiveID = PrimitiveIndex(); int3 index = int3(indices[3 * PrimitiveID], indices[3 * PrimitiveID + 1], indices[3 * PrimitiveID + 2]); Vertex v0 = unpack(index.x); Vertex v1 = unpack(index.y); Vertex v2 = unpack(index.z); // Interpolate normal const float3 barycentricCoords = float3(1.0f - attribs.bary.x - attribs.bary.y, attribs.bary.x, attribs.bary.y); float3 normal = normalize(v0.normal * barycentricCoords.x + v1.normal * barycentricCoords.y + v2.normal * barycentricCoords.z); // Basic lighting float3 lightVector = normalize(ubo.lightPos.xyz); float dot_product = max(dot(lightVector, normal), 0.6); rayPayload.color.rgb = v0.color.rgb * dot_product; rayPayload.distance = RayTCurrent(); rayPayload.normal = normal; // Objects with full white vertex color are treated as reflectors rayPayload.reflector = ((v0.color.r == 1.0f) && (v0.color.g == 1.0f) && (v0.color.b == 1.0f)) ? 1.0f : 0.0f; } [shader("miss")] void missMain(inout RayPayload rayPayload) { float3 worldRayDirection = WorldRayDirection(); // View-independent background gradient to simulate a basic sky background const float3 gradientStart = float3(0.5, 0.6, 1.0); const float3 gradientEnd = float3(1.0, 1.0, 1.0); float3 unitDir = normalize(worldRayDirection); float t = 0.5 * (unitDir.y + 1.0); rayPayload.color = (1.0 - t) * gradientStart + t * gradientEnd; rayPayload.distance = -1.0f; rayPayload.normal = float3(0, 0, 0); rayPayload.reflector = 0.0f; }