/* * Vulkan Example - Using occlusion query for visbility testing * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout used in this example // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_COLOR, }; class VulkanExample : public VulkanExampleBase { public: struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer teapot; vkMeshLoader::MeshBuffer plane; vkMeshLoader::MeshBuffer sphere; } meshes; struct { vkTools::UniformData vsScene; vkTools::UniformData teapot; vkTools::UniformData sphere; } uniformData; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(10.0f, 10.0f, 10.0f, 1.0f); float visible; } uboVS; struct { VkPipeline solid; VkPipeline occluder; // Pipeline with basic shaders used for occlusion pass VkPipeline simple; } pipelines; struct { VkDescriptorSet teapot; VkDescriptorSet sphere; } descriptorSets; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Stores occlusion query results struct { VkBuffer buffer; VkDeviceMemory memory; } queryResult; // Pool that stores all occlusion queries VkQueryPool queryPool; // Passed query samples uint64_t passedSamples[2] = { 1,1 }; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { width = 1280; height = 720; zoom = -35.0f; zoomSpeed = 2.5f; rotationSpeed = 0.5f; rotation = { 0.0, -123.75, 0.0 }; title = "Vulkan Example - Occlusion queries"; #ifdef _WIN32 if (!ENABLE_VALIDATION) { setupConsole(title); } #endif } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipeline(device, pipelines.occluder, nullptr); vkDestroyPipeline(device, pipelines.simple, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyQueryPool(device, queryPool, nullptr); vkDestroyBuffer(device, queryResult.buffer, nullptr); vkFreeMemory(device, queryResult.memory, nullptr); vkTools::destroyUniformData(device, &uniformData.vsScene); vkTools::destroyUniformData(device, &uniformData.sphere); vkTools::destroyUniformData(device, &uniformData.teapot); vkMeshLoader::freeMeshBufferResources(device, &meshes.sphere); vkMeshLoader::freeMeshBufferResources(device, &meshes.plane); vkMeshLoader::freeMeshBufferResources(device, &meshes.teapot); } // Create a buffer for storing the query result // Setup a query pool void setupQueryResultBuffer() { uint32_t bufSize = 2 * sizeof(uint64_t); VkMemoryRequirements memReqs; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, bufSize); VkResult err = vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer); assert(!err); vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory); assert(!err); err = vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0); assert(!err); // Create query pool VkQueryPoolCreateInfo queryPoolInfo = {}; queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO; queryPoolInfo.queryType = VK_QUERY_TYPE_OCCLUSION; queryPoolInfo.queryCount = 2; err = vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool); assert(!err); } // Retrieves the results of the occlusion queries submitted to the command buffer void getQueryResults() { VkResult err; err = vkGetQueryPoolResults( device, queryPool, 0, 2, sizeof(passedSamples), passedSamples, sizeof(uint64_t), VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT); assert(!err); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); // Reset query pool // Must be done outside of render pass vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; glm::mat4 modelMatrix = glm::mat4(); // Occlusion pass vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.simple); // Occluder first vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0); // Teapot vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 0, VK_FLAGS_NONE); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.teapot, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.teapot.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.teapot.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.teapot.indexCount, 1, 0, 0, 0); vkCmdEndQuery(drawCmdBuffers[i], queryPool, 0); // Sphere vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 1, VK_FLAGS_NONE); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.sphere, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.sphere.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.sphere.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.sphere.indexCount, 1, 0, 0, 0); vkCmdEndQuery(drawCmdBuffers[i], queryPool, 1); // Query results vkCmdCopyQueryPoolResults( drawCmdBuffers[i], queryPool, 0, 2, queryResult.buffer, 0, sizeof(uint64_t), VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT); // Visible pass // Clear color and depth attachments VkClearAttachment clearAttachments[2] = {}; clearAttachments[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; clearAttachments[0].clearValue.color = defaultClearColor; clearAttachments[0].colorAttachment = 0; clearAttachments[1].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; clearAttachments[1].clearValue.depthStencil = { 1.0f, 0 }; VkClearRect clearRect = {}; clearRect.layerCount = 1; clearRect.rect.offset = { 0, 0 }; clearRect.rect.extent = { width, height }; vkCmdClearAttachments( drawCmdBuffers[i], 2, clearAttachments, 1, &clearRect); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); // Teapot vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.teapot, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.teapot.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.teapot.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.teapot.indexCount, 1, 0, 0, 0); // Sphere vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.sphere, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.sphere.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.sphere.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.sphere.indexCount, 1, 0, 0, 0); // Occluder vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.occluder); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); getQueryResults(); } void loadMeshes() { loadMesh(getAssetPath() + "models/plane_z.3ds", &meshes.plane, vertexLayout, 0.4f); loadMesh(getAssetPath() + "models/teapot.3ds", &meshes.teapot, vertexLayout, 0.3f); loadMesh(getAssetPath() + "models/sphere.3ds", &meshes.sphere, vertexLayout, 0.3f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 3 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 3); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSets() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); // Occluder (plane) VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // teapot vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot); assert(!vkRes); writeDescriptorSets[0].dstSet = descriptorSets.teapot; writeDescriptorSets[0].pBufferInfo = &uniformData.teapot.descriptor; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // sphere vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere); assert(!vkRes); writeDescriptorSets[0].dstSet = descriptorSets.sphere; writeDescriptorSets[0].pBufferInfo = &uniformData.sphere.descriptor; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); assert(!err); // Simple pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); rasterizationState.cullMode = VK_CULL_MODE_NONE; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.simple); assert(!err); // Visual pipeline for the occluder shaderStages[0] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/occlusionquery/occluder.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Enable blending blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.occluder); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); // Teapot createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.teapot.buffer, &uniformData.teapot.memory, &uniformData.teapot.descriptor); // Sphere createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.sphere.buffer, &uniformData.sphere.memory, &uniformData.sphere.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); glm::mat4 rotMatrix = glm::mat4(); rotMatrix = glm::rotate(rotMatrix, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); rotMatrix = glm::rotate(rotMatrix, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); rotMatrix = glm::rotate(rotMatrix, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * rotMatrix;; uboVS.visible = 1.0f; uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsScene.memory); // teapot // Toggle color depending on visibility uboVS.visible = (passedSamples[0] > 0) ? 1.0f : 0.0f; uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, -10.0f)); err = vkMapMemory(device, uniformData.teapot.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.teapot.memory); // sphere // Toggle color depending on visibility uboVS.visible = (passedSamples[1] > 0) ? 1.0f : 0.0f; uboVS.model = viewMatrix * rotMatrix * glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 10.0f)); err = vkMapMemory(device, uniformData.sphere.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.sphere.memory); } void prepare() { VulkanExampleBase::prepare(); loadMeshes(); setupQueryResultBuffer(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); } virtual void viewChanged() { updateUniformBuffers(); std::cout << "Passed samples : Teapot = " << passedSamples[0] << " / Sphere = " << passedSamples[1] <<"\n"; } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }