/* * Vulkan Example - Using different pipelines in one single renderpass * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float col[3]; float uv[2]; float normal[3]; }; class VulkanExample: public VulkanExampleBase { private: vkTools::VulkanTexture textureColorMap; public: struct { int count; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer cube; } meshes; vkTools::UniformData uniformDataVS; // Same uniform buffer layout as shader struct { glm::mat4 projectionMatrix; glm::mat4 modelMatrix; glm::mat4 viewMatrix; } uboVS; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; struct { VkPipeline solidColor; VkPipeline wireFrame; VkPipeline texture; } pipelines; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -5.0f; rotation = glm::vec3(-32.5f, 45.0f, 0.0f); title = "Vulkan Example - Using pipelines"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solidColor, nullptr); vkDestroyPipeline(device, pipelines.wireFrame, nullptr); vkDestroyPipeline(device, pipelines.texture, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.cube); vkDestroyBuffer(device, uniformDataVS.buffer, nullptr); vkFreeMemory(device, uniformDataVS.memory, nullptr); textureLoader->destroyTexture(textureColorMap); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "textures/crate_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textureColorMap); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.cube.vertices.buf, offsets); vkCmdSetLineWidth(drawCmdBuffers[i], 2.0f); // Left : Solid colored viewport.width = (float)width / 3.0; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solidColor); vkCmdDraw(drawCmdBuffers[i], vertices.count, 1, 0, 0); // Center : Textured viewport.x = (float)width / 3.0; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.texture); vkCmdSetLineWidth(drawCmdBuffers[i], 2.0f); vkCmdDraw(drawCmdBuffers[i], vertices.count, 1, 0, 0); // Right : Wireframe viewport.x = (float)width / 3.0 + (float)width / 3.0; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.wireFrame); vkCmdDraw(drawCmdBuffers[i], vertices.count, 1, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } // Create vertices and buffers for uv mapped cube void generateCube() { // Setup vertices #define colred { 1.0f, 0.0f, 0.0f } #define colgreen { 0.0f, 1.0f, 0.0f } #define colblue { 0.0f, 0.0f, 1.0f } #define d 1.0f std::vector vertexBuffer = { // -Y { { d,-d, d }, colred,{ 1.0, 1.0 }, { 0.0f, 1.0f, 0.0f } }, { { -d,-d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, 1.0f, 0.0f } }, { { d,-d,-d }, colred,{ 1.0, 0.0 },{ 0.0f, 1.0f, 0.0f } }, { { d,-d, d }, colred,{ 1.0, 1.0 },{ 0.0f, 1.0f, 0.0f } }, { { -d,-d, d }, colred,{ 0.0, 1.0 },{ 0.0f, 1.0f, 0.0f } }, { { -d,-d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, 1.0f, 0.0f } }, // +Y { { d, d, d }, colred,{ 1.0, 1.0 },{ 0.0f, -1.0f, 0.0f } }, { { d, d,-d }, colred,{ 1.0, 0.0 },{ 0.0f, -1.0f, 0.0f } }, { { -d, d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, -1.0f, 0.0f } }, { { d, d, d }, colred,{ 1.0, 1.0 },{ 0.0f, -1.0f, 0.0f } }, { { -d, d,-d }, colred,{ 0.0, 0.0 },{ 0.0f, -1.0f, 0.0f } }, { { -d, d, d }, colred,{ 0.0, 1.0 },{ 0.0f, -1.0f, 0.0f } }, // -X { { -d,-d,-d }, colblue,{ 0.0, 0.0 },{ -1.0f, 0.0f, 0.0f } }, { { -d,-d, d }, colblue,{ 0.0, 1.0 },{ -1.0f, 0.0f, 0.0f } }, { { -d, d, d }, colblue,{ 1.0, 1.0 },{ -1.0f, 0.0f, 0.0f } }, { { -d,-d,-d }, colblue,{ 0.0, 0.0 },{ -1.0f, 0.0f, 0.0f } }, { { -d, d, d }, colblue,{ 1.0, 1.0 },{ -1.0f, 0.0f, 0.0f } }, { { -d, d,-d }, colblue,{ 1.0, 0.0 },{ -1.0f, 0.0f, 0.0f } }, // +X { { d, d, d }, colblue,{ 1.0, 1.0 },{ 1.0f, 0.0f, 0.0f } }, { { d,-d,-d }, colblue,{ 0.0, 0.0 },{ 1.0f, 0.0f, 0.0f } }, { { d, d,-d }, colblue,{ 1.0, 0.0 },{ 1.0f, 0.0f, 0.0f } }, { { d,-d,-d }, colblue,{ 0.0, 0.0 },{ 1.0f, 0.0f, 0.0f } }, { { d, d, d }, colblue,{ 1.0, 1.0 },{ 1.0f, 0.0f, 0.0f } }, { { d,-d, d }, colblue,{ 0.0, 1.0 },{ 1.0f, 0.0f, 0.0f } }, // -Z { { d, d,-d }, colgreen,{ 1.0, 1.0 },{ 0.0f, 0.0f, -1.0f } }, { { -d,-d,-d }, colgreen,{ 0.0, 0.0 },{ 0.0f, 0.0f, -1.0f } }, { { -d, d,-d }, colgreen,{ 0.0, 1.0 },{ 0.0f, 0.0f, -1.0f } }, { { d, d,-d }, colgreen,{ 1.0, 1.0 },{ 0.0f, 0.0f, -1.0f } }, { { d,-d,-d }, colgreen,{ 1.0, 0.0 },{ 0.0f, 0.0f, -1.0f } }, { { -d,-d,-d }, colgreen,{ 0.0, 0.0 },{ 0.0f, 0.0f, -1.0f } }, // +Z { { -d, d, d }, colgreen,{ 0.0, 1.0 },{ 0.0f, 0.0f, 1.0f } }, { { -d,-d, d }, colgreen,{ 0.0, 0.0 },{ 0.0f, 0.0f, 1.0f } }, { { d,-d, d }, colgreen,{ 1.0, 0.0 },{ 0.0f, 0.0f, 1.0f } }, { { d, d, d }, colgreen,{ 1.0, 1.0 },{ 0.0f, 0.0f, 1.0f } }, { { -d, d, d }, colgreen,{ 0.0, 1.0 },{ 0.0f, 0.0f, 1.0f } }, { { d,-d, d }, colgreen,{ 1.0, 0.0 },{ 0.0f, 0.0f, 1.0f } } }; #undef d vertices.count = vertexBuffer.size(); createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.cube.vertices.buf, &meshes.cube.vertices.mem); } void prepareVertices() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Color vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 3 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 2 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one combined image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); // Color map image descriptor VkDescriptorImageInfo texDescriptorColorMap = vkTools::initializers::descriptorImageInfo( textureColorMap.sampler, textureColorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader image sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorColorMap) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Color pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/pipelines/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/pipelines/color.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); // Textured pipeline VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solidColor); assert(!err); // Reuse most of the initial pipeline for the next pipelines and only change affected parameters // Cull back faces rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; // Pipeline for textured rendering // Use different fragment shader shaderStages[1] = loadShader(getAssetPath() + "shaders/pipelines/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.texture); assert(!err); // Pipeline for wire frame rendering // Solid polygon fill rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; // Use different fragment shader shaderStages[1] = loadShader(getAssetPath() + "shaders/pipelines/wireframe.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireFrame); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { VkResult err; // Vertex shader uniform buffer block VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS)); err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer); assert(!err); vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformDataVS.memory); assert(!err); err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0); assert(!err); uniformDataVS.descriptor.buffer = uniformDataVS.buffer; uniformDataVS.descriptor.offset = 0; uniformDataVS.descriptor.range = sizeof(uboVS); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projectionMatrix = glm::perspective(glm::radians(60.0f), (float)(width / 3.0f) / (float)height, 0.1f, 256.0f); uboVS.viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.modelMatrix = glm::mat4(); uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformDataVS.memory); assert(!err); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); prepareVertices(); prepareUniformBuffers(); setupDescriptorSetLayout(); generateCube(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }