/* * Vulkan Example - CPU based fire particle system * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false #define PARTICLE_COUNT 512 #define PARTICLE_SIZE 10.0f #define FLAME_RADIUS 8.0f #define PARTICLE_TYPE_FLAME 0 #define PARTICLE_TYPE_SMOKE 1 struct Particle { glm::vec4 pos; glm::vec4 color; float alpha; float size; float rotation; uint32_t type; // Attributes not used in shader glm::vec4 vel; float rotationSpeed; }; // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_TANGENT, vkMeshLoader::VERTEX_LAYOUT_BITANGENT }; class VulkanExample : public VulkanExampleBase { public: struct { struct { vkTools::VulkanTexture smoke; vkTools::VulkanTexture fire; // We use a custom sampler to change some sampler // attributes required for rotation the uv coordinates // inside the shader for alpha blended textures VkSampler sampler; } particles; struct { vkTools::VulkanTexture colorMap; vkTools::VulkanTexture normalMap; } floor; } textures; struct { vkMeshLoader::Mesh environment; } meshes; glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f); glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f); glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f); struct { VkBuffer buffer; VkDeviceMemory memory; // Store the mapped address of the particle data for reuse void *mappedMemory; // Size of the particle buffer in bytes size_t size; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } particles; struct { vkTools::UniformData fire; vkTools::UniformData environment; } uniformData; struct { glm::mat4 projection; glm::mat4 model; glm::vec2 viewportDim; float pointSize = PARTICLE_SIZE; } uboVS; struct { glm::mat4 projection; glm::mat4 model; glm::mat4 normal; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); glm::vec4 cameraPos; } uboEnv; struct { VkPipeline particles; VkPipeline environment; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; std::vector particleBuffer; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -75.0f; rotation = { -15.0f, 45.0f, 0.0f }; enableTextOverlay = true; title = "Vulkan Example - Particle system"; zoomSpeed *= 1.5f; timerSpeed *= 8.0f; srand(time(NULL)); } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class textureLoader->destroyTexture(textures.particles.smoke); textureLoader->destroyTexture(textures.particles.fire); textureLoader->destroyTexture(textures.floor.colorMap); textureLoader->destroyTexture(textures.floor.normalMap); vkDestroyPipeline(device, pipelines.particles, nullptr); vkDestroyPipeline(device, pipelines.environment, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkUnmapMemory(device, particles.memory); vkDestroyBuffer(device, particles.buffer, nullptr); vkFreeMemory(device, particles.memory, nullptr); vkDestroyBuffer(device, uniformData.fire.buffer, nullptr); vkFreeMemory(device, uniformData.fire.memory, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.environment.buffers); vkDestroySampler(device, textures.particles.sampler, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { {0.0f, 0.0f, 0.0f, 0.0f} }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0,0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Environment meshes.environment.drawIndexed(drawCmdBuffers[i]); // Particle system vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &particles.buffer, offsets); vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } float rnd(float range) { return range * (rand() / double(RAND_MAX)); } void initParticle(Particle *particle, glm::vec3 emitterPos) { particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f); particle->alpha = rnd(0.75f); particle->size = 1.0f + rnd(0.5f); particle->color = glm::vec4(1.0f); particle->type = PARTICLE_TYPE_FLAME; particle->rotation = rnd(2.0f * M_PI); particle->rotationSpeed = rnd(2.0f) - rnd(2.0f); // Get random sphere point float theta = rnd(2 * M_PI); float phi = rnd(M_PI) - M_PI / 2; float r = rnd(FLAME_RADIUS); particle->pos.x = r * cos(theta) * cos(phi); particle->pos.y = r * sin(phi); particle->pos.z = r * sin(theta) * cos(phi); particle->pos += glm::vec4(emitterPos, 0.0f); } void transitionParticle(Particle *particle) { switch (particle->type) { case PARTICLE_TYPE_FLAME: // Flame particles have a chance of turning into smoke if (rnd(1.0f) < 0.05f) { particle->alpha = 0.0f; particle->color = glm::vec4(0.25f + rnd(0.25f)); particle->pos.x *= 0.5f; particle->pos.z *= 0.5f; particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f); particle->size = 1.0f + rnd(0.5f); particle->rotationSpeed = rnd(1.0f) - rnd(1.0f); particle->type = PARTICLE_TYPE_SMOKE; } else { initParticle(particle, emitterPos); } break; case PARTICLE_TYPE_SMOKE: // Respawn at end of life initParticle(particle, emitterPos); break; } } void prepareParticles() { particleBuffer.resize(PARTICLE_COUNT); for (auto& particle : particleBuffer) { initParticle(&particle, emitterPos); particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f)); } particles.size = particleBuffer.size() * sizeof(Particle); createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, particles.size, particleBuffer.data(), &particles.buffer, &particles.memory); // Map the memory and store the pointer for reuse VK_CHECK_RESULT(vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory)); } void updateParticles() { float particleTimer = frameTimer * 0.45f; for (auto& particle : particleBuffer) { switch (particle.type) { case PARTICLE_TYPE_FLAME: particle.pos.y -= particle.vel.y * particleTimer * 3.5f; particle.alpha += particleTimer * 2.5f; particle.size -= particleTimer * 0.5f; break; case PARTICLE_TYPE_SMOKE: particle.pos -= particle.vel * frameTimer * 1.0f; particle.alpha += particleTimer * 1.25f; particle.size += particleTimer * 0.125f; particle.color -= particleTimer * 0.05f; break; } particle.rotation += particleTimer * particle.rotationSpeed; // Transition particle state if (particle.alpha > 2.0f) { transitionParticle(&particle); } } size_t size = particleBuffer.size() * sizeof(Particle); memcpy(particles.mappedMemory, particleBuffer.data(), size); } void loadTextures() { // Particles textureLoader->loadTexture( getAssetPath() + "textures/particle_smoke.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.particles.smoke); textureLoader->loadTexture( getAssetPath() + "textures/particle_fire.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.particles.fire); // Floor textureLoader->loadTexture( getAssetPath() + "textures/fireplace_colormap_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.floor.colorMap); textureLoader->loadTexture( getAssetPath() + "textures/fireplace_normalmap_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.floor.normalMap); // Create a custom sampler to be used with the particle textures // Create sampler VkSamplerCreateInfo samplerCreateInfo = vkTools::initializers::samplerCreateInfo(); samplerCreateInfo.magFilter = VK_FILTER_LINEAR; samplerCreateInfo.minFilter = VK_FILTER_LINEAR; samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; // Different address mode samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU; samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU; samplerCreateInfo.mipLodBias = 0.0f; samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER; samplerCreateInfo.minLod = 0.0f; // Both particle textures have the same number of mip maps samplerCreateInfo.maxLod = textures.particles.fire.mipLevels; // Enable anisotropic filtering samplerCreateInfo.maxAnisotropy = 8; samplerCreateInfo.anisotropyEnable = VK_TRUE; // Use a different border color (than the normal texture loader) for additive blending samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler)); } void loadMeshes() { loadMesh(getAssetPath() + "models/fireplace.obj", &meshes.environment.buffers, vertexLayout, 10.0f); meshes.environment.setupVertexInputState(vertexLayout); } void setupVertexDescriptions() { // Binding description particles.bindingDescriptions.resize(1); particles.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions // Location 0 : Position particles.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32A32_SFLOAT, 0)); // Location 1 : Color particles.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(float) * 4)); // Location 2 : Alpha particles.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32_SFLOAT, sizeof(float) * 8)); // Location 3 : Size particles.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32_SFLOAT, sizeof(float) * 9)); // Location 4 : Rotation particles.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32_SFLOAT, sizeof(float) * 10)); // Location 5 : Type particles.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 5, VK_FORMAT_R32_SINT, sizeof(float) * 11)); particles.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); particles.inputState.vertexBindingDescriptionCount = particles.bindingDescriptions.size(); particles.inputState.pVertexBindingDescriptions = particles.bindingDescriptions.data(); particles.inputState.vertexAttributeDescriptionCount = particles.attributeDescriptions.size(); particles.inputState.pVertexAttributeDescriptions = particles.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSets() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptorSmoke = vkTools::initializers::descriptorImageInfo( textures.particles.sampler, textures.particles.smoke.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorFire = vkTools::initializers::descriptorImageInfo( textures.particles.sampler, textures.particles.fire.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.fire.descriptor), // Binding 1 : Smoke texture vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSmoke), // Binding 1 : Fire texture array vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorFire) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Environment VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &meshes.environment.descriptorSet)); VkDescriptorImageInfo texDescriptorColorMap = vkTools::initializers::descriptorImageInfo( textures.floor.colorMap.sampler, textures.floor.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorNormalMap = vkTools::initializers::descriptorImageInfo( textures.floor.normalMap.sampler, textures.floor.normalMap.view, VK_IMAGE_LAYOUT_GENERAL); writeDescriptorSets.clear(); // Binding 0 : Vertex shader uniform buffer writeDescriptorSets.push_back( vkTools::initializers::writeDescriptorSet( meshes.environment.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.environment.descriptor)); // Binding 1 : Color map writeDescriptorSets.push_back( vkTools::initializers::writeDescriptorSet( meshes.environment.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorColorMap)); // Binding 2 : Normal map writeDescriptorSets.push_back( vkTools::initializers::writeDescriptorSet( meshes.environment.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormalMap)); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/particlefire/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/particlefire/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &particles.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); depthStencilState.depthWriteEnable = VK_FALSE; // Premulitplied alpha blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.particles)); // Environment rendering pipeline (normal mapped) shaderStages[0] = loadShader(getAssetPath() + "shaders/particlefire/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/particlefire/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); pipelineCreateInfo.pVertexInputState = &meshes.environment.vertexInputState; blendAttachmentState.blendEnable = VK_FALSE; depthStencilState.depthWriteEnable = VK_TRUE; inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.environment)); meshes.environment.pipeline = pipelines.environment; meshes.environment.pipelineLayout = pipelineLayout; } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), &uboVS, &uniformData.fire.buffer, &uniformData.fire.memory, &uniformData.fire.descriptor); // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboEnv), &uboEnv, &uniformData.environment.buffer, &uniformData.environment.memory, &uniformData.environment.descriptor); updateUniformBuffers(); } void updateUniformBufferLight() { // Environment uboEnv.lightPos.x = sin(timer * 2 * M_PI) * 1.5f; uboEnv.lightPos.y = 0.0f; uboEnv.lightPos.z = cos(timer * 2 * M_PI) * 1.5f; uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.environment.memory, 0, sizeof(uboEnv), 0, (void **)&pData)); memcpy(pData, &uboEnv, sizeof(uboEnv)); vkUnmapMemory(device, uniformData.environment.memory); } void updateUniformBuffers() { // Vertex shader glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0.0f, 15.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.viewportDim = glm::vec2((float)width, (float)height); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.fire.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.fire.memory); // Environment uboEnv.projection = uboVS.projection; uboEnv.model = uboVS.model; uboEnv.normal = glm::inverseTranspose(uboEnv.model); uboEnv.cameraPos = glm::vec4(0.0, 0.0, zoom, 0.0); VK_CHECK_RESULT(vkMapMemory(device, uniformData.environment.memory, 0, sizeof(uboEnv), 0, (void **)&pData)); memcpy(pData, &uboEnv, sizeof(uboEnv)); vkUnmapMemory(device, uniformData.environment.memory); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); prepareParticles(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); loadMeshes(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateUniformBufferLight(); updateParticles(); } } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }