/* * Vulkan Example - Deferred shading with multiple render targets (aka G-Buffer) example * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 2048 #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_TANGENT }; class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = false; struct { struct { vkTools::VulkanTexture colorMap; vkTools::VulkanTexture normalMap; } model; struct { vkTools::VulkanTexture colorMap; vkTools::VulkanTexture normalMap; } floor; } textures; struct { vkMeshLoader::MeshBuffer model; vkMeshLoader::MeshBuffer floor; vkMeshLoader::MeshBuffer quad; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { glm::mat4 projection; glm::mat4 model; glm::mat4 view; glm::vec4 instancePos[3]; } uboVS, uboOffscreenVS; struct Light { glm::vec4 position; glm::vec3 color; float radius; }; struct { Light lights[6]; glm::vec4 viewPos; } uboFragmentLights; struct { vkTools::UniformData vsFullScreen; vkTools::UniformData vsOffscreen; vkTools::UniformData fsLights; } uniformData; struct { VkPipeline deferred; VkPipeline offscreen; VkPipeline debug; } pipelines; struct { VkPipelineLayout deferred; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet model; VkDescriptorSet floor; } descriptorSets; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; VkFormat format; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment position, normal, albedo; FrameBufferAttachment depth; VkRenderPass renderPass; } offScreenFrameBuf; // One sampler for the frame buffer color attachments VkSampler colorSampler; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; // Semaphore used to synchronize between offscreen and final scene rendering VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -8.0f; rotation = { 0.0f, 0.0f, 0.0f }; enableTextOverlay = true; title = "Vulkan Example - Deferred shading (2016 by Sascha Willems)"; camera.type = Camera::CameraType::firstperson; camera.movementSpeed = 5.0f; #ifndef __ANDROID__ camera.rotationSpeed = 0.25f; #endif camera.position = { 2.15f, 0.3f, -8.75f }; camera.setRotation(glm::vec3(-0.75f, 12.5f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroySampler(device, colorSampler, nullptr); // Frame buffer // Color attachments vkDestroyImageView(device, offScreenFrameBuf.position.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.position.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.position.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.normal.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.normal.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.normal.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.albedo.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.albedo.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.albedo.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.deferred, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.model); vkMeshLoader::freeMeshBufferResources(device, &meshes.floor); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.vsOffscreen); vkTools::destroyUniformData(device, &uniformData.vsFullScreen); vkTools::destroyUniformData(device, &uniformData.fsLights); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr); textureLoader->destroyTexture(textures.model.colorMap); textureLoader->destroyTexture(textures.model.normalMap); textureLoader->destroyTexture(textures.floor.colorMap); textureLoader->destroyTexture(textures.floor.normalMap); vkDestroySemaphore(device, offscreenSemaphore, nullptr); } // Create a frame buffer attachment void createAttachment( VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment *attachment, VkCommandBuffer layoutCmd) { VkImageAspectFlags aspectMask = 0; VkImageLayout imageLayout; attachment->format = format; if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } assert(aspectMask > 0); VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = format; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = usage | VK_IMAGE_USAGE_SAMPLED_BIT; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &attachment->image)); vkGetImageMemoryRequirements(device, attachment->image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem)); VK_CHECK_RESULT(vkBindImageMemory(device, attachment->image, attachment->mem, 0)); VkImageViewCreateInfo imageView = vkTools::initializers::imageViewCreateInfo(); imageView.viewType = VK_IMAGE_VIEW_TYPE_2D; imageView.format = format; imageView.subresourceRange = {}; imageView.subresourceRange.aspectMask = aspectMask; imageView.subresourceRange.baseMipLevel = 0; imageView.subresourceRange.levelCount = 1; imageView.subresourceRange.baseArrayLayer = 0; imageView.subresourceRange.layerCount = 1; imageView.image = attachment->image; VK_CHECK_RESULT(vkCreateImageView(device, &imageView, nullptr, &attachment->view)); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // blitted to our render target void prepareOffscreenFramebuffer() { VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; // Color attachments // (World space) Positions createAttachment( VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.position, layoutCmd); // (World space) Normals createAttachment( VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.normal, layoutCmd); // Albedo (color) createAttachment( VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.albedo, layoutCmd); // Depth attachment // Find a suitable depth format VkFormat attDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &attDepthFormat); assert(validDepthFormat); createAttachment( attDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &offScreenFrameBuf.depth, layoutCmd); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); // Set up separate renderpass with references // to the color and depth attachments std::array attachmentDescs = {}; // Init attachment properties for (uint32_t i = 0; i < 4; ++i) { attachmentDescs[i].samples = VK_SAMPLE_COUNT_1_BIT; attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; if (i == 3) { attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } else { attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } } // Formats attachmentDescs[0].format = offScreenFrameBuf.position.format; attachmentDescs[1].format = offScreenFrameBuf.normal.format; attachmentDescs[2].format = offScreenFrameBuf.albedo.format; attachmentDescs[3].format = offScreenFrameBuf.depth.format; std::vector colorReferences; colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); colorReferences.push_back({ 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); VkAttachmentReference depthReference = {}; depthReference.attachment = 3; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.pColorAttachments = colorReferences.data(); subpass.colorAttachmentCount = static_cast(colorReferences.size()); subpass.pDepthStencilAttachment = &depthReference; // Use subpass dependencies for attachment layput transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.pAttachments = attachmentDescs.data(); renderPassInfo.attachmentCount = static_cast(attachmentDescs.size()); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 2; renderPassInfo.pDependencies = dependencies.data(); VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offScreenFrameBuf.renderPass)); std::array attachments; attachments[0] = offScreenFrameBuf.position.view; attachments[1] = offScreenFrameBuf.normal.view; attachments[2] = offScreenFrameBuf.albedo.view; attachments[3] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = {}; fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbufCreateInfo.pNext = NULL; fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass; fbufCreateInfo.pAttachments = attachments.data(); fbufCreateInfo.attachmentCount = static_cast(attachments.size()); fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer)); // Create sampler to sample from the color attachments VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_NEAREST; sampler.minFilter = VK_FILTER_NEAREST; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &colorSampler)); } // Build command buffer for rendering the scene to the offscreen frame buffer attachments void buildDeferredCommandBuffer() { if (offScreenCmdBuffer == VK_NULL_HANDLE) { offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); // Clear values for all attachments written in the fragment sahder std::array clearValues; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[3].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = static_cast(clearValues.size()); renderPassBeginInfo.pClearValues = clearValues.data(); VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo)); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); VkDeviceSize offsets[1] = { 0 }; // Background vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.floor, 0, NULL); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.floor.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.floor.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.floor.indexCount, 1, 0, 0, 0); // Object vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.model, 0, NULL); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.model.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.model.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.model.indexCount, 3, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer)); } void loadTextures() { textureLoader->loadTexture(getAssetPath() + "models/armor/colormap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.model.colorMap); textureLoader->loadTexture(getAssetPath() + "models/armor/normalmap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.model.normalMap); textureLoader->loadTexture(getAssetPath() + "textures/pattern_35_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.floor.colorMap); textureLoader->loadTexture(getAssetPath() + "textures/pattern_35_normalmap_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.floor.normalMap); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL); if (debugDisplay) { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1); // Move viewport to display final composition in lower right corner viewport.x = viewport.width * 0.5f; viewport.y = viewport.height * 0.5f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); } // Final composition as full screen quad vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.deferred); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], 6, 1, 0, 0, 1); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/armor/armor.dae", &meshes.model, vertexLayout, 1.0f); vkMeshLoader::MeshCreateInfo meshCreateInfo; meshCreateInfo.scale = glm::vec3(2.0f); meshCreateInfo.uvscale = glm::vec2(4.0f); meshCreateInfo.center = glm::vec3(0.0f, 2.35f, 0.0f); loadMesh(getAssetPath() + "models/plane.obj", &meshes.floor, vertexLayout, &meshCreateInfo); } void generateQuads() { // Setup vertices for multiple screen aligned quads // Used for displaying final result and debug struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; float tangent[3]; }; std::vector vertexBuffer; float x = 0.0f; float y = 0.0f; for (uint32_t i = 0; i < 3; i++) { // Last component of normal is used for debug display sampler index vertexBuffer.push_back({ { x+1.0f, y+1.0f, 0.0f }, { 1.0f, 1.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); vertexBuffer.push_back({ { x, y+1.0f, 0.0f }, { 0.0f, 1.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); vertexBuffer.push_back({ { x, y, 0.0f }, { 0.0f, 0.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); vertexBuffer.push_back({ { x+1.0f, y, 0.0f }, { 1.0f, 0.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); x += 1.0f; if (x > 1.0f) { x = 0.0f; y += 1.0f; } } createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; for (uint32_t i = 0; i < 3; ++i) { uint32_t indices[6] = { 0,1,2, 2,3,0 }; for (auto index : indices) { indexBuffer.push_back(i * 4 + index); } } meshes.quad.indexCount = static_cast(indexBuffer.size()); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(5); // Location 0: Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1: Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2: Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3: Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); // Location 4: Tangent vertices.attributeDescriptions[4] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 11); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 9) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Deferred shading layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Position texture target / Scene colormap vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Normals texture target vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 3 : Albedo texture target vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), // Binding 4 : Fragment shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 4), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred)); // Offscreen (scene) rendering pipeline layout VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); } void setupDescriptorSet() { std::vector writeDescriptorSets; // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Image descriptors for the offscreen color attachments VkDescriptorImageInfo texDescriptorPosition = vkTools::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.position.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorNormal = vkTools::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.normal.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorAlbedo = vkTools::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.albedo.view, VK_IMAGE_LAYOUT_GENERAL); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsFullScreen.descriptor), // Binding 1 : Position texture target vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorPosition), // Binding 2 : Normals texture target vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormal), // Binding 3 : Albedo texture target vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorAlbedo), // Binding 4 : Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4, &uniformData.fsLights.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Offscreen (scene) // Model VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsOffscreen.descriptor), // Binding 1: Color map vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.model.colorMap.descriptor), // Binding 2: Normal map vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.model.normalMap.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Backbround VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.floor)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsOffscreen.descriptor), // Binding 1: Color map vkTools::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor), // Binding 2: Normal map vkTools::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Final fullscreen pass pipeline std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.deferred, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred)); // Debug display pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug)); // Offscreen pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Separate render pass pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass; // Separate layout pipelineCreateInfo.layout = pipelineLayouts.offscreen; // Blend attachment states required for all color attachments // This is important, as color write mask will otherwise be 0x0 and you // won't see anything rendered to the attachment std::array blendAttachmentStates = { vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE) }; colorBlendState.attachmentCount = static_cast(blendAttachmentStates.size()); colorBlendState.pAttachments = blendAttachmentStates.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Fullscreen vertex shader createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), nullptr, &uniformData.vsFullScreen.buffer, &uniformData.vsFullScreen.memory, &uniformData.vsFullScreen.descriptor); // Deferred vertex shader createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboOffscreenVS), nullptr, &uniformData.vsOffscreen.buffer, &uniformData.vsOffscreen.memory, &uniformData.vsOffscreen.descriptor); // Deferred fragment shader createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboFragmentLights), nullptr, &uniformData.fsLights.buffer, &uniformData.fsLights.memory, &uniformData.fsLights.descriptor); // Init some values uboOffscreenVS.instancePos[0] = glm::vec4(0.0f); uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f); uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f); // Update updateUniformBuffersScreen(); updateUniformBufferDeferredMatrices(); updateUniformBufferDeferredLights(); } void updateUniformBuffersScreen() { if (debugDisplay) { uboVS.projection = glm::ortho(0.0f, 2.0f, 0.0f, 2.0f, -1.0f, 1.0f); } else { uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); } uboVS.model = glm::mat4(); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsFullScreen.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsFullScreen.memory); } void updateUniformBufferDeferredMatrices() { uboOffscreenVS.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f); uboOffscreenVS.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboOffscreenVS.model = glm::mat4(); uboOffscreenVS.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.25f, 0.0f) + cameraPos); uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboOffscreenVS.model = glm::rotate(uboOffscreenVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboOffscreenVS.projection = camera.matrices.perspective; uboOffscreenVS.view = camera.matrices.view; uboOffscreenVS.model = glm::mat4(); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsOffscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData)); memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS)); vkUnmapMemory(device, uniformData.vsOffscreen.memory); } // Update fragment shader light position uniform block void updateUniformBufferDeferredLights() { // White uboFragmentLights.lights[0].position = glm::vec4(0.0f, 0.0f, 1.0f, 0.0f); uboFragmentLights.lights[0].color = glm::vec3(1.5f); uboFragmentLights.lights[0].radius = 15.0f * 0.25f; // Red uboFragmentLights.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f); uboFragmentLights.lights[1].color = glm::vec3(1.0f, 0.0f, 0.0f); uboFragmentLights.lights[1].radius = 15.0f; // Blue uboFragmentLights.lights[2].position = glm::vec4(2.0f, 1.0f, 0.0f, 0.0f); uboFragmentLights.lights[2].color = glm::vec3(0.0f, 0.0f, 2.5f); uboFragmentLights.lights[2].radius = 5.0f; // Yellow uboFragmentLights.lights[3].position = glm::vec4(0.0f, 0.9f, 0.5f, 0.0f); uboFragmentLights.lights[3].color = glm::vec3(1.0f, 1.0f, 0.0f); uboFragmentLights.lights[3].radius = 2.0f; // Green uboFragmentLights.lights[4].position = glm::vec4(0.0f, 0.5f, 0.0f, 0.0f); uboFragmentLights.lights[4].color = glm::vec3(0.0f, 1.0f, 0.2f); uboFragmentLights.lights[4].radius = 5.0f; // Yellow uboFragmentLights.lights[5].position = glm::vec4(0.0f, 1.0f, 0.0f, 0.0f); uboFragmentLights.lights[5].color = glm::vec3(1.0f, 0.7f, 0.3f); uboFragmentLights.lights[5].radius = 25.0f; uboFragmentLights.lights[0].position.x = sin(glm::radians(360.0f * timer)) * 5.0f; uboFragmentLights.lights[0].position.z = cos(glm::radians(360.0f * timer)) * 5.0f; uboFragmentLights.lights[1].position.x = -4.0f + sin(glm::radians(360.0f * timer) + 45.0f) * 2.0f; uboFragmentLights.lights[1].position.z = 0.0f + cos(glm::radians(360.0f * timer) + 45.0f) * 2.0f; uboFragmentLights.lights[2].position.x = 4.0f + sin(glm::radians(360.0f * timer)) * 2.0f; uboFragmentLights.lights[2].position.z = 0.0f + cos(glm::radians(360.0f * timer)) * 2.0f; uboFragmentLights.lights[4].position.x = 0.0f + sin(glm::radians(360.0f * timer + 90.0f)) * 5.0f; uboFragmentLights.lights[4].position.z = 0.0f - cos(glm::radians(360.0f * timer + 45.0f)) * 5.0f; uboFragmentLights.lights[5].position.x = 0.0f + sin(glm::radians(-360.0f * timer + 135.0f)) * 10.0f; uboFragmentLights.lights[5].position.z = 0.0f - cos(glm::radians(-360.0f * timer - 45.0f)) * 10.0f; // Current view position uboFragmentLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.fsLights.memory, 0, sizeof(uboFragmentLights), 0, (void **)&pData)); memcpy(pData, &uboFragmentLights, sizeof(uboFragmentLights)); vkUnmapMemory(device, uniformData.fsLights.memory); } void draw() { VulkanExampleBase::prepareFrame(); // The scene render command buffer has to wait for the offscreen // rendering to be finished before we can use the framebuffer // color image for sampling during final rendering // To ensure this we use a dedicated offscreen synchronization // semaphore that will be signaled when offscreen renderin // has been finished // This is necessary as an implementation may start both // command buffers at the same time, there is no guarantee // that command buffers will be executed in the order they // have been submitted by the application // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &offScreenCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuads(); loadMeshes(); setupVertexDescriptions(); prepareOffscreenFramebuffer(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); buildDeferredCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); updateUniformBufferDeferredLights(); } virtual void viewChanged() { updateUniformBufferDeferredMatrices(); } void toggleDebugDisplay() { debugDisplay = !debugDisplay; reBuildCommandBuffers(); updateUniformBuffersScreen(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case KEY_F1: case GAMEPAD_BUTTON_A: toggleDebugDisplay(); updateTextOverlay(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to toggle debug display", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"F1\" to toggle debug display", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif // Render targets if (debugDisplay) { textOverlay->addText("World space position", (float)width * 0.25f, (float)height * 0.5f - 25.0f, VulkanTextOverlay::alignCenter); textOverlay->addText("World space normals", (float)width * 0.75f, (float)height * 0.5f - 25.0f, VulkanTextOverlay::alignCenter); textOverlay->addText("Albedo", (float)width * 0.25f, (float)height - 25.0f, VulkanTextOverlay::alignCenter); textOverlay->addText("Final image", (float)width * 0.75f, (float)height - 25.0f, VulkanTextOverlay::alignCenter); } } }; VULKAN_EXAMPLE_MAIN()