/* * Vulkan Example - Model loading and rendering * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanTexture.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: bool wireframe = false; struct { vks::Texture2D colorMap; } textures; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; // Vertex layout used in this example // This must fit input locations of the vertex shader used to render the model struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; glm::vec3 color; }; // Contains all Vulkan resources required to represent vertex and index buffers for a model // This is for demonstration and learning purposes, the other examples use a model loader class for easy access struct Model { struct { VkBuffer buffer; VkDeviceMemory memory; } vertices; struct { int count; VkBuffer buffer; VkDeviceMemory memory; } indices; // Destroys all Vulkan resources created for this model void destroy(VkDevice device) { vkDestroyBuffer(device, vertices.buffer, nullptr); vkFreeMemory(device, vertices.memory, nullptr); vkDestroyBuffer(device, indices.buffer, nullptr); vkFreeMemory(device, indices.memory, nullptr); }; } model; struct { vks::Buffer scene; } uniformBuffers; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(25.0f, 5.0f, 5.0f, 1.0f); } uboVS; struct Pipelines { VkPipeline solid; VkPipeline wireframe = VK_NULL_HANDLE; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -5.5f; zoomSpeed = 2.5f; rotationSpeed = 0.5f; rotation = { -0.5f, -112.75f, 0.0f }; cameraPos = { 0.1f, 1.1f, 0.0f }; title = "Model rendering"; settings.overlay = true; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); if (pipelines.wireframe != VK_NULL_HANDLE) { vkDestroyPipeline(device, pipelines.wireframe, nullptr); } vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); model.destroy(device); textures.colorMap.destroy(); uniformBuffers.scene.destroy(); } virtual void getEnabledFeatures() { // Fill mode non solid is required for wireframe display if (deviceFeatures.fillModeNonSolid) { enabledFeatures.fillModeNonSolid = VK_TRUE; }; } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); VkDeviceSize offsets[1] = { 0 }; // Bind mesh vertex buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &model.vertices.buffer, offsets); // Bind mesh index buffer vkCmdBindIndexBuffer(drawCmdBuffers[i], model.indices.buffer, 0, VK_INDEX_TYPE_UINT32); // Render mesh vertex buffer using it's indices vkCmdDrawIndexed(drawCmdBuffers[i], model.indices.count, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } // Load a model from file using the ASSIMP model loader and generate all resources required to render the model void loadModel(std::string filename) { // Load the model from file using ASSIMP const aiScene* scene; Assimp::Importer Importer; // Flags for loading the mesh static const int assimpFlags = aiProcess_FlipWindingOrder | aiProcess_Triangulate | aiProcess_PreTransformVertices; #if defined(__ANDROID__) // Meshes are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *meshData = malloc(size); AAsset_read(asset, meshData, size); AAsset_close(asset); scene = Importer.ReadFileFromMemory(meshData, size, assimpFlags); free(meshData); #else scene = Importer.ReadFile(filename.c_str(), assimpFlags); #endif // Generate vertex buffer from ASSIMP scene data float scale = 1.0f; std::vector vertexBuffer; // Iterate through all meshes in the file and extract the vertex components for (uint32_t m = 0; m < scene->mNumMeshes; m++) { for (uint32_t v = 0; v < scene->mMeshes[m]->mNumVertices; v++) { Vertex vertex; // Use glm make_* functions to convert ASSIMP vectors to glm vectors vertex.pos = glm::make_vec3(&scene->mMeshes[m]->mVertices[v].x) * scale; vertex.normal = glm::make_vec3(&scene->mMeshes[m]->mNormals[v].x); // Texture coordinates and colors may have multiple channels, we only use the first [0] one vertex.uv = glm::make_vec2(&scene->mMeshes[m]->mTextureCoords[0][v].x); // Mesh may not have vertex colors vertex.color = (scene->mMeshes[m]->HasVertexColors(0)) ? glm::make_vec3(&scene->mMeshes[m]->mColors[0][v].r) : glm::vec3(1.0f); // Vulkan uses a right-handed NDC (contrary to OpenGL), so simply flip Y-Axis vertex.pos.y *= -1.0f; vertexBuffer.push_back(vertex); } } size_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); // Generate index buffer from ASSIMP scene data std::vector indexBuffer; for (uint32_t m = 0; m < scene->mNumMeshes; m++) { uint32_t indexBase = static_cast(indexBuffer.size()); for (uint32_t f = 0; f < scene->mMeshes[m]->mNumFaces; f++) { // We assume that all faces are triangulated for (uint32_t i = 0; i < 3; i++) { indexBuffer.push_back(scene->mMeshes[m]->mFaces[f].mIndices[i] + indexBase); } } } size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); model.indices.count = static_cast(indexBuffer.size()); // Static mesh should always be device local bool useStaging = true; if (useStaging) { struct { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create staging buffers // Vertex data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBufferSize, &vertexStaging.buffer, &vertexStaging.memory, vertexBuffer.data())); // Index data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBufferSize, &indexStaging.buffer, &indexStaging.memory, indexBuffer.data())); // Create device local buffers // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, &model.vertices.buffer, &model.vertices.memory)); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, &model.indices.buffer, &model.indices.memory)); // Copy from staging buffers VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, model.vertices.buffer, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, model.indices.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); } else { // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, vertexBufferSize, &model.vertices.buffer, &model.vertices.memory, vertexBuffer.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, indexBufferSize, &model.indices.buffer, &model.indices.memory, indexBuffer.data())); } } void loadAssets() { loadModel(getAssetPath() + "models/voyager/voyager.dae"); if (deviceFeatures.textureCompressionBC) { textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_bc3_unorm.ktx", VK_FORMAT_BC3_UNORM_BLOCK, vulkanDevice, queue); } else if (deviceFeatures.textureCompressionASTC_LDR) { textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_astc_8x8_unorm.ktx", VK_FORMAT_ASTC_8x8_UNORM_BLOCK, vulkanDevice, queue); } else if (deviceFeatures.textureCompressionETC2) { textures.colorMap.loadFromFile(getAssetPath() + "models/voyager/voyager_etc2_unorm.ktx", VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, vulkanDevice, queue); } else { vks::tools::exitFatal("Device does not support any compressed texture format!", "Error"); } } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)); // Location 1 : Normal vertices.attributeDescriptions[1] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)); // Location 3 : Color vertices.attributeDescriptions[3] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)); vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one combined image sampler std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkDescriptorImageInfo texDescriptor = vks::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 1 : Color map vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); // Wire frame rendering pipeline if (deviceFeatures.fillModeNonSolid) { rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; rasterizationState.lineWidth = 1.0f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe)); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(uboVS))); // Map persistent VK_CHECK_RESULT(uniformBuffers.scene.map()); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(1.0f), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); memcpy(uniformBuffers.scene.mapped, &uboVS, sizeof(uboVS)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->checkBox("Wireframe", &wireframe)) { buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()