/* * Vulkan Example - Mesh rendering * * Uses tiny obj loader (https://github.com/syoyo/tinyobjloader) by syoyo * * Note : * This is a basic android example. It may be integrated into the other examples at some point in the future. * Until then this serves as a starting point for using Vulkan on Android, with some of the functionality required * already moved to the example base classes (e.g. swap chain) * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include "vulkanandroid.h" #include "vulkanswapchain.hpp" #include #define TINYOBJLOADER_IMPLEMENTATION #include "tiny_obj_loader.h" #define GLM_FORCE_RADIANS #include "glm/glm.hpp" #include "glm/gtc/matrix_transform.hpp" #define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "AndroidProject1.NativeActivity", __VA_ARGS__)) #define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "AndroidProject1.NativeActivity", __VA_ARGS__)) #define VERTEX_BUFFER_BIND_ID 0 #define deg_to_rad(deg) deg * float(M_PI / 180) struct saved_state { glm::vec3 rotation; float zoom; }; struct VulkanExample { struct android_app* app; int animating; uint32_t width; uint32_t height; struct saved_state state; // Vulkan struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec3 color; }; VkInstance instance; VkPhysicalDevice physicalDevice; VkDevice device; VulkanSwapChain swapChain; VkQueue queue; VkCommandPool cmdPool; VkRenderPass renderPass; VkPipelineCache pipelineCache; VkDescriptorPool descriptorPool; VkDescriptorSetLayout descriptorSetLayout; VkDescriptorSet descriptorSet; VkPipelineLayout pipelineLayout; std::vector drawCmdBuffers; VkCommandBuffer postPresentCmdBuffer = VK_NULL_HANDLE; VkCommandBuffer setupCmdBuffer = VK_NULL_HANDLE; VkPhysicalDeviceMemoryProperties deviceMemoryProperties; std::vector shaderModules; struct { VkBuffer buf; VkDeviceMemory mem; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { int count; VkBuffer buf; VkDeviceMemory mem; } indices; struct { VkBuffer buffer; VkDeviceMemory memory; VkDescriptorBufferInfo descriptor; } uniformDataVS; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 10.0f, 1.0f); } uboVS; struct { VkPipeline solid; } pipelines; uint32_t currentBuffer = 0; struct { VkImage image; VkDeviceMemory mem; VkImageView view; } depthStencil; std::vectorframeBuffers; bool prepared = false; VkBool32 getMemoryType(uint32_t typeBits, VkFlags properties, uint32_t * typeIndex) { for (uint32_t i = 0; i < 32; i++) { if ((typeBits & 1) == 1) { if ((deviceMemoryProperties.memoryTypes[i].propertyFlags & properties) == properties) { *typeIndex = i; return true; } } typeBits >>= 1; } return false; } VkShaderModule loadShaderModule(const char *fileName, VkShaderStageFlagBits stage) { // Load shader from compressed asset AAsset* asset = AAssetManager_open(app->activity->assetManager, fileName, AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); char *shaderCode = new char[size]; AAsset_read(asset, shaderCode, size); AAsset_close(asset); VkShaderModule shaderModule; VkShaderModuleCreateInfo moduleCreateInfo; VkResult err; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.codeSize = size; moduleCreateInfo.pCode = (uint32_t*)shaderCode; moduleCreateInfo.flags = 0; err = vkCreateShaderModule(device, &moduleCreateInfo, NULL, &shaderModule); assert(!err); return shaderModule; } VkPipelineShaderStageCreateInfo loadShader(const char * fileName, VkShaderStageFlagBits stage) { VkPipelineShaderStageCreateInfo shaderStage = {}; shaderStage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStage.stage = stage; shaderStage.module = loadShaderModule(fileName, stage); shaderStage.pName = "main"; assert(shaderStage.module != NULL); shaderModules.push_back(shaderStage.module); return shaderStage; } void initVulkan() { prepared = false; bool libLoaded = loadVulkanLibrary(); assert(libLoaded); VkResult vkRes; // Instance VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "Vulkan Android Example"; appInfo.applicationVersion = 1; appInfo.pEngineName = "VulkanAndroidExample"; appInfo.engineVersion = 1; // todo : Workaround to support implementations that are not using the latest SDK appInfo.apiVersion = VK_MAKE_VERSION(1, 0, 1); VkInstanceCreateInfo instanceCreateInfo = {}; instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instanceCreateInfo.pApplicationInfo = &appInfo; vkRes = vkCreateInstance(&instanceCreateInfo, NULL, &instance); assert(vkRes == VK_SUCCESS); loadVulkanFunctions(instance); // Device // Always use first physical device uint32_t gpuCount; vkRes = vkEnumeratePhysicalDevices(instance, &gpuCount, &physicalDevice); assert(vkRes == VK_SUCCESS); // Find a queue that supports graphics operations uint32_t graphicsQueueIndex = 0; uint32_t queueCount; vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL); assert(queueCount >= 1); std::vector queueProps; queueProps.resize(queueCount); vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data()); for (graphicsQueueIndex = 0; graphicsQueueIndex < queueCount; graphicsQueueIndex++) { if (queueProps[graphicsQueueIndex].queueFlags & VK_QUEUE_GRAPHICS_BIT) break; } assert(graphicsQueueIndex < queueCount); // Request the queue float queuePriorities = 0.0f; VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = graphicsQueueIndex; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriorities; // Create device VkDeviceCreateInfo deviceCreateInfo = {}; deviceCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; deviceCreateInfo.queueCreateInfoCount = 1; deviceCreateInfo.pQueueCreateInfos = &queueCreateInfo; vkRes = vkCreateDevice(physicalDevice, &deviceCreateInfo, nullptr, &device); assert(vkRes == VK_SUCCESS); // Get graphics queue vkGetDeviceQueue(device, graphicsQueueIndex, 0, &queue); // Device memory properties (for finding appropriate memory types) vkGetPhysicalDeviceMemoryProperties(physicalDevice, &deviceMemoryProperties); // Swap chain swapChain.init(instance, physicalDevice, device); swapChain.initSwapChain(app->window); // Command buffer pool VkCommandPoolCreateInfo cmdPoolInfo = {}; cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex; cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; vkRes = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &cmdPool); assert(!vkRes); // Pipeline cache VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {}; pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; VkResult err = vkCreatePipelineCache(device, &pipelineCacheCreateInfo, nullptr, &pipelineCache); assert(!err); createSetupCommandBuffer(); startSetupCommandBuffer(); swapChain.setup(setupCmdBuffer, &width, &height); flushSetupCommandBuffer(); createCommandBuffers(); setupDepthStencil(); setupRenderPass(); setupFrameBuffer(); prepareVertices(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); state.zoom = -5.0f; state.rotation = glm::vec3(); prepared = true; } void cleanupVulkan() { prepared = false; vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, vertices.buf, nullptr); vkFreeMemory(device, vertices.mem, nullptr); vkDestroyBuffer(device, indices.buf, nullptr); vkFreeMemory(device, indices.mem, nullptr); vkDestroyBuffer(device, uniformDataVS.buffer, nullptr); vkFreeMemory(device, uniformDataVS.memory, nullptr); swapChain.cleanup(); vkDestroyDescriptorPool(device, descriptorPool, nullptr); if (setupCmdBuffer != VK_NULL_HANDLE) { vkFreeCommandBuffers(device, cmdPool, 1, &setupCmdBuffer); } vkFreeCommandBuffers(device, cmdPool, drawCmdBuffers.size(), drawCmdBuffers.data()); vkFreeCommandBuffers(device, cmdPool, 1, &postPresentCmdBuffer); vkDestroyRenderPass(device, renderPass, nullptr); for (uint32_t i = 0; i < frameBuffers.size(); i++) { vkDestroyFramebuffer(device, frameBuffers[i], nullptr); } for (auto& shaderModule : shaderModules) { vkDestroyShaderModule(device, shaderModule, nullptr); } vkDestroyImageView(device, depthStencil.view, nullptr); vkDestroyImage(device, depthStencil.image, nullptr); vkFreeMemory(device, depthStencil.mem, nullptr); vkDestroyPipelineCache(device, pipelineCache, nullptr); vkDestroyDevice(device, nullptr); vkDestroyInstance(instance, nullptr); freeVulkanLibrary(); } void createSetupCommandBuffer() { VkCommandBufferAllocateInfo cmdBufAllocateInfo = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &setupCmdBuffer); assert(!vkRes); } void startSetupCommandBuffer() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); vkBeginCommandBuffer(setupCmdBuffer, &cmdBufInfo); } void flushSetupCommandBuffer() { VkResult err; if (setupCmdBuffer == VK_NULL_HANDLE) return; err = vkEndCommandBuffer(setupCmdBuffer); assert(!err); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &setupCmdBuffer; err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void createCommandBuffers() { drawCmdBuffers.resize(swapChain.imageCount); VkCommandBufferAllocateInfo cmdBufAllocateInfo = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, drawCmdBuffers.size()); VkResult vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, drawCmdBuffers.data()); assert(!vkRes); cmdBufAllocateInfo.commandBufferCount = 1; vkRes = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &postPresentCmdBuffer); assert(!vkRes); } void prepareVertices() { // Load mesh from compressed asset AAsset* asset = AAssetManager_open(app->activity->assetManager, "models/vulkanlogo.obj", AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); char *assetData = new char[size]; AAsset_read(asset, assetData, size); AAsset_close(asset); std::stringstream assetStream(assetData); std::vector shapes; std::vector materials; std::string objerr; tinyobj::MaterialFileReader matFileReader(""); bool ret = tinyobj::LoadObj(shapes, materials, objerr, assetStream, matFileReader, true); LOGW("shapes %d", shapes.size()); // Setup vertices float scale = 0.025f; std::vector vertexBuffer; std::vector indexBuffer; for (auto& shape : shapes) { // Vertices for (size_t i = 0; i < shape.mesh.positions.size() / 3; i++) { Vertex v; v.pos[0] = shape.mesh.positions[3 * i + 0] * scale; v.pos[1] = -shape.mesh.positions[3 * i + 1] * scale; v.pos[2] = shape.mesh.positions[3 * i + 2] * scale; v.normal[0] = shape.mesh.normals[3 * i + 0]; v.normal[1] = shape.mesh.normals[3 * i + 1]; v.normal[2] = shape.mesh.normals[3 * i + 2]; v.color = glm::vec3(1.0f, 0.0f, 0.0f); vertexBuffer.push_back(v); } // Indices for (size_t i = 0; i < shape.mesh.indices.size() / 3; i++) { indexBuffer.push_back(shape.mesh.indices[3 * i + 0]); indexBuffer.push_back(shape.mesh.indices[3 * i + 1]); indexBuffer.push_back(shape.mesh.indices[3 * i + 2]); } } uint32_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); VkMemoryAllocateInfo memAlloc = {}; memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; memAlloc.pNext = NULL; memAlloc.allocationSize = 0; memAlloc.memoryTypeIndex = 0; VkMemoryRequirements memReqs; VkResult err; void *data; // Generate vertex buffer // Setup VkBufferCreateInfo bufInfo = {}; bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufInfo.pNext = NULL; bufInfo.size = vertexBufferSize; bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; bufInfo.flags = 0; // Copy vertex data to VRAM memset(&vertices, 0, sizeof(vertices)); err = vkCreateBuffer(device, &bufInfo, nullptr, &vertices.buf); assert(!err); vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex); vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem); assert(!err); err = vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data); assert(!err); memcpy(data, vertexBuffer.data(), vertexBufferSize); vkUnmapMemory(device, vertices.mem); assert(!err); err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0); assert(!err); // Generate index buffer // Setup VkBufferCreateInfo indexbufferInfo = {}; indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; indexbufferInfo.pNext = NULL; indexbufferInfo.size = indexBufferSize; indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT; indexbufferInfo.flags = 0; // Copy index data to VRAM memset(&indices, 0, sizeof(indices)); err = vkCreateBuffer(device, &bufInfo, nullptr, &indices.buf); assert(!err); vkGetBufferMemoryRequirements(device, indices.buf, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem); assert(!err); err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data); assert(!err); memcpy(data, indexBuffer.data(), indexBufferSize); vkUnmapMemory(device, indices.mem); err = vkBindBufferMemory(device, indices.buf, indices.mem, 0); assert(!err); indices.count = indexBuffer.size(); // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6); // Assign to vertex buffer vertices.inputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertices.inputState.pNext = NULL; vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void updateUniformBuffers() { // Update matrices uboVS.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, state.zoom)); uboVS.model = viewMatrix; uboVS.model = glm::rotate(uboVS.model, deg_to_rad(state.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, deg_to_rad(state.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, deg_to_rad(state.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); // Map uniform buffer and update it uint8_t *pData; VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformDataVS.memory); assert(!err); } void prepareUniformBuffers() { // Prepare and initialize uniform buffer containing shader uniforms VkMemoryRequirements memReqs; // Vertex shader uniform buffer block VkBufferCreateInfo bufferInfo = {}; VkMemoryAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.pNext = NULL; allocInfo.allocationSize = 0; allocInfo.memoryTypeIndex = 0; VkResult err; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = sizeof(uboVS); bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; // Create a new buffer err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer); assert(!err); // Get memory requirements including size, alignment and memory type vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; // Gets the appropriate memory type for this type of buffer allocation // Only memory types that are visible to the host getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex); // Allocate memory for the uniform buffer err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory)); assert(!err); // Bind memory to buffer err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0); assert(!err); // Store information in the uniform's descriptor uniformDataVS.descriptor.buffer = uniformDataVS.buffer; uniformDataVS.descriptor.offset = 0; uniformDataVS.descriptor.range = sizeof(uboVS); updateUniformBuffers(); } void preparePipelines() { VkResult err; VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables; dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT); dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR); VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader("shaders/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("shaders/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); assert(!err); } void setupDescriptorPool() { std::vector poolSizes; poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1)); VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings; setLayoutBindings.push_back( // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)); VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); std::vector writeDescriptorSets; writeDescriptorSets.push_back( // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor)); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void setupDepthStencil() { VkImageCreateInfo image = {}; image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; image.pNext = NULL; image.imageType = VK_IMAGE_TYPE_2D; image.format = VK_FORMAT_D24_UNORM_S8_UINT; image.extent = { width, height, 1 }; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; image.flags = 0; VkMemoryAllocateInfo mem_alloc = {}; mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mem_alloc.pNext = NULL; mem_alloc.allocationSize = 0; mem_alloc.memoryTypeIndex = 0; VkImageViewCreateInfo depthStencilView = {}; depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; depthStencilView.pNext = NULL; depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = VK_FORMAT_D24_UNORM_S8_UINT; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VkMemoryRequirements memReqs; VkResult err; err = vkCreateImage(device, &image, nullptr, &depthStencil.image); assert(!err); vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs); mem_alloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &mem_alloc.memoryTypeIndex); err = vkAllocateMemory(device, &mem_alloc, nullptr, &depthStencil.mem); assert(!err); err = vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0); assert(!err); vkTools::setImageLayout(setupCmdBuffer, depthStencil.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); depthStencilView.image = depthStencil.image; err = vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view); assert(!err); } void setupFrameBuffer() { VkImageView attachments[2]; // Depth/Stencil attachment is the same for all frame buffers attachments[1] = depthStencil.view; VkFramebufferCreateInfo frameBufferCreateInfo = {}; frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; frameBufferCreateInfo.pNext = NULL; frameBufferCreateInfo.renderPass = renderPass; frameBufferCreateInfo.attachmentCount = 2; frameBufferCreateInfo.pAttachments = attachments; frameBufferCreateInfo.width = width; frameBufferCreateInfo.height = height; frameBufferCreateInfo.layers = 1; // Create frame buffers for every swap chain image frameBuffers.resize(swapChain.imageCount); for (uint32_t i = 0; i < frameBuffers.size(); i++) { attachments[0] = swapChain.buffers[i].view; VkResult err = vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i]); assert(!err); } } void setupRenderPass() { VkAttachmentDescription attachments[2]; attachments[0].format = VK_FORMAT_R8G8B8A8_UNORM; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[1].format = VK_FORMAT_D24_UNORM_S8_UINT; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.flags = 0; subpass.inputAttachmentCount = 0; subpass.pInputAttachments = NULL; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorReference; subpass.pResolveAttachments = NULL; subpass.pDepthStencilAttachment = &depthReference; subpass.preserveAttachmentCount = 0; subpass.pPreserveAttachments = NULL; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.pNext = NULL; renderPassInfo.attachmentCount = 2; renderPassInfo.pAttachments = attachments; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 0; renderPassInfo.pDependencies = NULL; VkResult err; err = vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass); assert(!err); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = {}; cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmdBufInfo.pNext = NULL; VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = {}; renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassBeginInfo.pNext = NULL; renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update dynamic viewport state VkViewport viewport = {}; viewport.height = (float)height; viewport.width = (float)width; viewport.minDepth = (float) 0.0f; viewport.maxDepth = (float) 1.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); // Update dynamic scissor state VkRect2D scissor = {}; scissor.extent.width = width; scissor.extent.height = height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Bind descriptor sets describing shader binding points vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); // Bind the rendering pipeline (including the shaders) vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); // Bind triangle vertices VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets); // Bind triangle indices vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32); // Draw indexed triangle vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1); vkCmdEndRenderPass(drawCmdBuffers[i]); // Add a present memory barrier to the end of the command buffer // This will transform the frame buffer color attachment to a // new layout for presenting it to the windowing system integration VkImageMemoryBarrier prePresentBarrier = {}; prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; prePresentBarrier.pNext = NULL; prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; prePresentBarrier.dstAccessMask = 0; prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; prePresentBarrier.image = swapChain.buffers[i].image; vkCmdPipelineBarrier( drawCmdBuffers[i], VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &prePresentBarrier); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; VkSemaphore presentCompleteSemaphore; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = {}; presentCompleteSemaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; presentCompleteSemaphoreCreateInfo.pNext = NULL; presentCompleteSemaphoreCreateInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore); assert(!err); // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(presentCompleteSemaphore, ¤tBuffer); assert(!err); // The submit infor strcuture contains a list of // command buffers and semaphores to be submitted to a queue // If you want to submit multiple command buffers, pass an array VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = &presentCompleteSemaphore; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to the graphics queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); // Present the current buffer to the swap chain // This will display the image err = swapChain.queuePresent(queue, currentBuffer); assert(!err); vkDestroySemaphore(device, presentCompleteSemaphore, nullptr); // Add a post present image memory barrier // This will transform the frame buffer color attachment back // to it's initial layout after it has been presented to the // windowing system // See buildCommandBuffers for the pre present barrier that // does the opposite transformation VkImageMemoryBarrier postPresentBarrier = {}; postPresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; postPresentBarrier.pNext = NULL; postPresentBarrier.srcAccessMask = 0; postPresentBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; postPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; postPresentBarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; postPresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; postPresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; postPresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; postPresentBarrier.image = swapChain.buffers[currentBuffer].image; // Use dedicated command buffer from example base class for submitting the post present barrier VkCommandBufferBeginInfo cmdBufInfo = {}; cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; err = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo); assert(!err); // Put post present barrier into command buffer vkCmdPipelineBarrier( postPresentCmdBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &postPresentBarrier); err = vkEndCommandBuffer(postPresentCmdBuffer); assert(!err); // Submit to the queue submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &postPresentCmdBuffer; err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } }; static int32_t handleInput(struct android_app* app, AInputEvent* event) { struct VulkanExample* vulkanExample = (struct VulkanExample*)app->userData; if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION) { // todo return 1; } return 0; } static void handleCommand(struct android_app* app, int32_t cmd) { VulkanExample* vulkanExample = (VulkanExample*)app->userData; switch (cmd) { case APP_CMD_SAVE_STATE: vulkanExample->app->savedState = malloc(sizeof(struct saved_state)); *((struct saved_state*)vulkanExample->app->savedState) = vulkanExample->state; vulkanExample->app->savedStateSize = sizeof(struct saved_state); break; case APP_CMD_INIT_WINDOW: if (vulkanExample->app->window != NULL) { vulkanExample->initVulkan(); assert(vulkanExample->prepared); } break; case APP_CMD_LOST_FOCUS: vulkanExample->animating = 0; break; } } /** * This is the main entry point of a native application that is using * android_native_app_glue. It runs in its own thread, with its own * event loop for receiving input events and doing other things. */ void android_main(struct android_app* state) { VulkanExample *engine = new VulkanExample(); //memset(&engine, 0, sizeof(engine)); state->userData = engine; state->onAppCmd = handleCommand; state->onInputEvent = handleInput; engine->app = state; engine->animating = 1; // loop waiting for stuff to do. while (1) { // Read all pending events. int ident; int events; struct android_poll_source* source; while ((ident = ALooper_pollAll(engine->animating ? 0 : -1, NULL, &events, (void**)&source)) >= 0) { if (source != NULL) { source->process(state, source); } if (state->destroyRequested != 0) { engine->cleanupVulkan(); return; } } // Render frame if (engine->prepared) { if (engine->animating) { // Update rotation engine->state.rotation.y += 0.25f; if (engine->state.rotation.y > 360.0f) { engine->state.rotation.y -= 360.0f; } engine->updateUniformBuffers(); } engine->draw(); } } }