/* * Vulkan Example - Indirect drawing * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) * * Summary: * Use a device local buffer that stores draw commands for instanced rendering of different meshes stored * in the same buffer. * * Indirect drawing offloads draw command generation and offers the ability to update them on the GPU * without the CPU having to touch the buffer again, also reducing the number of drawcalls. * * The example shows how to setup and fill such a buffer on the CPU side, stages it to the device and * shows how to render it using only one draw command. * * See readme.md for details * */ #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define INSTANCE_BUFFER_BIND_ID 1 #define ENABLE_VALIDATION false // Number of instances per object #if defined(__ANDROID__) #define OBJECT_INSTANCE_COUNT 1024 // Circular range of plant distribution #define PLANT_RADIUS 20.0f #else #define OBJECT_INSTANCE_COUNT 2048 // Circular range of plant distribution #define PLANT_RADIUS 25.0f #endif class VulkanExample : public VulkanExampleBase { public: struct { vks::Texture2DArray plants; vks::Texture2D ground; } textures; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR, }); struct { vks::Model plants; vks::Model ground; vks::Model skysphere; } models; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; // Per-instance data block struct InstanceData { glm::vec3 pos; glm::vec3 rot; float scale; uint32_t texIndex; }; // Contains the instanced data vks::Buffer instanceBuffer; // Contains the indirect drawing commands vks::Buffer indirectCommandsBuffer; uint32_t indirectDrawCount; struct { glm::mat4 projection; glm::mat4 view; } uboVS; struct { vks::Buffer scene; } uniformData; struct { VkPipeline plants; VkPipeline ground; VkPipeline skysphere; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VkSampler samplerRepeat; uint32_t objectCount = 0; // Store the indirect draw commands containing index offsets and instance count per object std::vector indirectCommands; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Indirect rendering"; camera.type = Camera::CameraType::firstperson; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(-12.0f, 159.0f, 0.0f)); camera.setTranslation(glm::vec3(0.4f, 1.25f, 0.0f)); camera.movementSpeed = 5.0f; settings.overlay = true; } ~VulkanExample() { vkDestroyPipeline(device, pipelines.plants, nullptr); vkDestroyPipeline(device, pipelines.ground, nullptr); vkDestroyPipeline(device, pipelines.skysphere, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); models.plants.destroy(); models.ground.destroy(); models.skysphere.destroy(); textures.plants.destroy(); textures.ground.destroy(); instanceBuffer.destroy(); indirectCommandsBuffer.destroy(); uniformData.scene.destroy(); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Example uses multi draw indirect if available if (deviceFeatures.multiDrawIndirect) { enabledFeatures.multiDrawIndirect = VK_TRUE; } // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } // Enable texture compression if (deviceFeatures.textureCompressionBC) { enabledFeatures.textureCompressionBC = VK_TRUE; } else if (deviceFeatures.textureCompressionASTC_LDR) { enabledFeatures.textureCompressionASTC_LDR = VK_TRUE; } else if (deviceFeatures.textureCompressionETC2) { enabledFeatures.textureCompressionETC2 = VK_TRUE; } }; void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.18f, 0.27f, 0.5f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); // Plants vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.plants); // Binding point 0 : Mesh vertex buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.plants.vertices.buffer, offsets); // Binding point 1 : Instance data buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.plants.indices.buffer, 0, VK_INDEX_TYPE_UINT32); // If the multi draw feature is supported: // One draw call for an arbitrary number of ojects // Index offsets and instance count are taken from the indirect buffer if (vulkanDevice->features.multiDrawIndirect) { vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, 0, indirectDrawCount, sizeof(VkDrawIndexedIndirectCommand)); } else { // If multi draw is not available, we must issue separate draw commands for (auto j = 0; j < indirectCommands.size(); j++) { vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, j * sizeof(VkDrawIndexedIndirectCommand), 1, sizeof(VkDrawIndexedIndirectCommand)); } } // Ground vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.ground); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.ground.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.ground.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.ground.indexCount, 1, 0, 0, 0); // Skysphere vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skysphere); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.skysphere.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skysphere.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.skysphere.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { models.plants.loadFromFile(getAssetPath() + "models/plants.dae", vertexLayout, 0.0025f, vulkanDevice, queue); models.ground.loadFromFile(getAssetPath() + "models/plane_circle.dae", vertexLayout, PLANT_RADIUS + 1.0f, vulkanDevice, queue); models.skysphere.loadFromFile(getAssetPath() + "models/skysphere.dae", vertexLayout, 512.0f / 10.0f, vulkanDevice, queue); // Textures std::string texFormatSuffix; VkFormat texFormat; // Get supported compressed texture format if (vulkanDevice->features.textureCompressionBC) { texFormatSuffix = "_bc3_unorm"; texFormat = VK_FORMAT_BC3_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionASTC_LDR) { texFormatSuffix = "_astc_8x8_unorm"; texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionETC2) { texFormatSuffix = "_etc2_unorm"; texFormat = VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK; } else { vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT); } textures.plants.loadFromFile(getAssetPath() + "textures/texturearray_plants" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.ground.loadFromFile(getAssetPath() + "textures/ground_dry" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(2); // Mesh vertex buffer (description) at binding point 0 vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), // Input rate for the data passed to shader // Step for each vertex rendered VK_VERTEX_INPUT_RATE_VERTEX); vertices.bindingDescriptions[1] = vks::initializers::vertexInputBindingDescription( INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), // Input rate for the data passed to shader // Step for each instance rendered VK_VERTEX_INPUT_RATE_INSTANCE); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.clear(); // Per-Vertex attributes // Location 0 : Position vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0) ); // Location 1 : Normal vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3) ); // Location 2 : Texture coordinates vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6) ); // Location 3 : Color vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8) ); // Instanced attributes // Location 4: Position vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, pos)) ); // Location 5: Rotation vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, rot)) ); // Location 6: Scale vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT, offsetof(InstanceData, scale)) ); // Location 7: Texture array layer index vertices.attributeDescriptions.push_back( vks::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, offsetof(InstanceData, texIndex)) ); vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0: Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1: Fragment shader combined sampler (plants texture array) vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 1: Fragment shader combined sampler (ground texture) vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.scene.descriptor), // Binding 1: Plants texture array combined vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.plants.descriptor), // Binding 2: Ground texture combined vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.ground.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); std::array shaderStages; pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); // Indirect (and instanced) pipeline for the plants shaderStages[0] = loadShader(getAssetPath() + "shaders/indirectdraw/indirectdraw.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/indirectdraw/indirectdraw.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.plants)); // Ground shaderStages[0] = loadShader(getAssetPath() + "shaders/indirectdraw/ground.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/indirectdraw/ground.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); //rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.ground)); // Skysphere shaderStages[0] = loadShader(getAssetPath() + "shaders/indirectdraw/skysphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/indirectdraw/skysphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); //rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skysphere)); } // Prepare (and stage) a buffer containing the indirect draw commands void prepareIndirectData() { indirectCommands.clear(); // Create on indirect command for each mesh in the scene uint32_t m = 0; for (auto& modelPart : models.plants.parts) { VkDrawIndexedIndirectCommand indirectCmd{}; indirectCmd.instanceCount = OBJECT_INSTANCE_COUNT; indirectCmd.firstInstance = m * OBJECT_INSTANCE_COUNT; indirectCmd.firstIndex = modelPart.indexBase; indirectCmd.indexCount = modelPart.indexCount; indirectCommands.push_back(indirectCmd); m++; } indirectDrawCount = static_cast(indirectCommands.size()); objectCount = 0; for (auto indirectCmd : indirectCommands) { objectCount += indirectCmd.instanceCount; } vks::Buffer stagingBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, indirectCommands.size() * sizeof(VkDrawIndexedIndirectCommand), indirectCommands.data())); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indirectCommandsBuffer, stagingBuffer.size)); vulkanDevice->copyBuffer(&stagingBuffer, &indirectCommandsBuffer, queue); stagingBuffer.destroy(); } // Prepare (and stage) a buffer containing instanced data for the mesh draws void prepareInstanceData() { std::vector instanceData; instanceData.resize(objectCount); std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr)); std::uniform_real_distribution uniformDist(0.0f, 1.0f); for (uint32_t i = 0; i < objectCount; i++) { instanceData[i].rot = glm::vec3(0.0f, float(M_PI) * uniformDist(rndEngine), 0.0f); float theta = 2 * float(M_PI) * uniformDist(rndEngine); float phi = acos(1 - 2 * uniformDist(rndEngine)); instanceData[i].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * PLANT_RADIUS; instanceData[i].scale = 1.0f + uniformDist(rndEngine) * 2.0f; instanceData[i].texIndex = i / OBJECT_INSTANCE_COUNT; } vks::Buffer stagingBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, instanceData.size() * sizeof(InstanceData), instanceData.data())); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &instanceBuffer, stagingBuffer.size)); vulkanDevice->copyBuffer(&stagingBuffer, &instanceBuffer, queue); stagingBuffer.destroy(); } void prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformData.scene, sizeof(uboVS))); VK_CHECK_RESULT(uniformData.scene.map()); updateUniformBuffer(true); } void updateUniformBuffer(bool viewChanged) { if (viewChanged) { uboVS.projection = camera.matrices.perspective; uboVS.view = camera.matrices.view; } memcpy(uniformData.scene.mapped, &uboVS, sizeof(uboVS)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be submitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareIndirectData(); prepareInstanceData(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) { return; } draw(); } virtual void viewChanged() { updateUniformBuffer(true); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (!vulkanDevice->features.multiDrawIndirect) { if (overlay->header("Info")) { overlay->text("multiDrawIndirect not supported"); } } if (overlay->header("Statistics")) { overlay->text("Objects: %d", objectCount); } } }; VULKAN_EXAMPLE_MAIN()