/* * Vulkan Example - Multisampling using resolve attachments (MSAA) * * This sample shows how to do multisampled anti aliasing using built-in hardware via resolve attachments * These are special attachments that a multi-sampled is resolved to using a fixed sample pattern * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" class VulkanExample : public VulkanExampleBase { public: bool useSampleShading = false; VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT; vkglTF::Model model; struct UniformData { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(5.0f, -5.0f, 5.0f, 1.0f); } uniformData; vks::Buffer uniformBuffer; struct { VkPipeline MSAA{ VK_NULL_HANDLE }; VkPipeline MSAASampleShading{ VK_NULL_HANDLE }; } pipelines; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; VkExtent2D attachmentSize{}; // Holds the Vulkan resources required for the final multi sample output target struct MultiSampleTarget { struct { VkImage image{ VK_NULL_HANDLE }; VkImageView view{ VK_NULL_HANDLE }; VkDeviceMemory memory{ VK_NULL_HANDLE }; } color; struct { VkImage image{ VK_NULL_HANDLE }; VkImageView view{ VK_NULL_HANDLE }; VkDeviceMemory memory{ VK_NULL_HANDLE }; } depth; } multisampleTarget; VulkanExample() : VulkanExampleBase() { title = "Multisampling"; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f)); camera.setTranslation(glm::vec3(2.5f, 2.5f, -7.5f)); } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipelines.MSAA, nullptr); vkDestroyPipeline(device, pipelines.MSAASampleShading, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Destroy MSAA target vkDestroyImage(device, multisampleTarget.color.image, nullptr); vkDestroyImageView(device, multisampleTarget.color.view, nullptr); vkFreeMemory(device, multisampleTarget.color.memory, nullptr); vkDestroyImage(device, multisampleTarget.depth.image, nullptr); vkDestroyImageView(device, multisampleTarget.depth.view, nullptr); vkFreeMemory(device, multisampleTarget.depth.memory, nullptr); uniformBuffer.destroy(); } } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Enable sample rate shading filtering if supported if (deviceFeatures.sampleRateShading) { enabledFeatures.sampleRateShading = VK_TRUE; } // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } } // Creates a multi sample render target (image and view) that is used to resolve // into the visible frame buffer target in the render pass void setupMultisampleTarget() { // Check if device supports requested sample count for color and depth frame buffer assert((deviceProperties.limits.framebufferColorSampleCounts & sampleCount) && (deviceProperties.limits.framebufferDepthSampleCounts & sampleCount)); // Color target VkImageCreateInfo info = vks::initializers::imageCreateInfo(); info.imageType = VK_IMAGE_TYPE_2D; info.format = swapChain.colorFormat; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.samples = sampleCount; // Image will only be used as a transient target info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.color.image)); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, multisampleTarget.color.image, &memReqs); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); memAlloc.allocationSize = memReqs.size; // We prefer a lazily allocated memory type // This means that the memory gets allocated when the implementation sees fit, e.g. when first using the images VkBool32 lazyMemTypePresent; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent); if (!lazyMemTypePresent) { // If this is not available, fall back to device local memory memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); } VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.color.memory)); vkBindImageMemory(device, multisampleTarget.color.image, multisampleTarget.color.memory, 0); // Create image view for the MSAA target VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo(); viewInfo.image = multisampleTarget.color.image; viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = swapChain.colorFormat; viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; viewInfo.components.a = VK_COMPONENT_SWIZZLE_A; viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewInfo.subresourceRange.levelCount = 1; viewInfo.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.color.view)); // Depth target info.imageType = VK_IMAGE_TYPE_2D; info.format = depthFormat; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.samples = sampleCount; // Image will only be used as a transient target info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(device, &info, nullptr, &multisampleTarget.depth.image)); vkGetImageMemoryRequirements(device, multisampleTarget.depth.image, &memReqs); memAlloc = vks::initializers::memoryAllocateInfo(); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &lazyMemTypePresent); if (!lazyMemTypePresent) { memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); } VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.depth.memory)); vkBindImageMemory(device, multisampleTarget.depth.image, multisampleTarget.depth.memory, 0); // Create image view for the MSAA target viewInfo.image = multisampleTarget.depth.image; viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = depthFormat; viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; viewInfo.components.a = VK_COMPONENT_SWIZZLE_A; viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) viewInfo.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; viewInfo.subresourceRange.levelCount = 1; viewInfo.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.depth.view)); } // Setup a render pass for using a multi sampled attachment // and a resolve attachment that the msaa image is resolved // to at the end of the render pass void setupRenderPass() { // Overrides the virtual function of the base class attachmentSize = { width, height }; std::array attachments = {}; // Multisampled attachment that we render to attachments[0].format = swapChain.colorFormat; attachments[0].samples = sampleCount; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // This is the frame buffer attachment to where the multisampled image // will be resolved to and which will be presented to the swapchain attachments[1].format = swapChain.colorFormat; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[1].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Multisampled depth attachment we render to attachments[2].format = depthFormat; attachments[2].samples = sampleCount; attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[2].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 2; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Resolve attachment reference for the color attachment VkAttachmentReference resolveReference = {}; resolveReference.attachment = 1; resolveReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorReference; // Pass our resolve attachments to the sub pass subpass.pResolveAttachments = &resolveReference; subpass.pDepthStencilAttachment = &depthReference; std::array dependencies{}; // Depth attachment dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[0].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT; dependencies[0].dependencyFlags = 0; // Color attachment dependencies[1].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].dstSubpass = 0; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].srcAccessMask = 0; dependencies[1].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT; dependencies[1].dependencyFlags = 0; VkRenderPassCreateInfo renderPassInfo = vks::initializers::renderPassCreateInfo(); renderPassInfo.attachmentCount = static_cast(attachments.size()); renderPassInfo.pAttachments = attachments.data(); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 2; renderPassInfo.pDependencies = dependencies.data(); VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass)); } // Frame buffer attachments must match with render pass setup, // so we need to adjust frame buffer creation to cover our // multisample target void setupFrameBuffer() { // Overrides the virtual function of the base class // SRS - If the window is resized, the MSAA attachments need to be released and recreated if (attachmentSize.width != width || attachmentSize.height != height) { attachmentSize = { width, height }; // Destroy MSAA target vkDestroyImage(device, multisampleTarget.color.image, nullptr); vkDestroyImageView(device, multisampleTarget.color.view, nullptr); vkFreeMemory(device, multisampleTarget.color.memory, nullptr); vkDestroyImage(device, multisampleTarget.depth.image, nullptr); vkDestroyImageView(device, multisampleTarget.depth.view, nullptr); vkFreeMemory(device, multisampleTarget.depth.memory, nullptr); } std::array attachments; setupMultisampleTarget(); attachments[0] = multisampleTarget.color.view; // attachment[1] = swapchain image attachments[2] = multisampleTarget.depth.view; VkFramebufferCreateInfo frameBufferCreateInfo = {}; frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; frameBufferCreateInfo.pNext = NULL; frameBufferCreateInfo.renderPass = renderPass; frameBufferCreateInfo.attachmentCount = static_cast(attachments.size()); frameBufferCreateInfo.pAttachments = attachments.data(); frameBufferCreateInfo.width = width; frameBufferCreateInfo.height = height; frameBufferCreateInfo.layers = 1; // Create frame buffers for every swap chain image frameBuffers.resize(swapChain.imageCount); for (uint32_t i = 0; i < frameBuffers.size(); i++) { attachments[1] = swapChain.buffers[i].view; VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i])); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[3]; // Clear to a white background for higher contrast clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 1.0f } }; clearValues[1].color = { { 1.0f, 1.0f, 1.0f, 1.0f } }; clearValues[2].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 3; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, useSampleShading ? pipelines.MSAASampleShading : pipelines.MSAA); model.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages, pipelineLayout); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { model.loadFromFile(getAssetPath() + "models/voyager.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY); } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout const std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { // Layout uses set 0 for passing vertex shader ubo and set 1 for fragment shader images (taken from glTF model) const std::vector setLayouts = { descriptorSetLayout, vkglTF::descriptorSetLayoutImage, }; VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), 2); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; // Setup multi sampling VkPipelineMultisampleStateCreateInfo multisampleState{}; multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; // Number of samples to use for rasterization multisampleState.rasterizationSamples = sampleCount; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color }); // MSAA rendering pipeline shaderStages[0] = loadShader(getShadersPath() + "multisampling/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "multisampling/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.MSAA)); if (vulkanDevice->features.sampleRateShading) { // MSAA with sample shading pipeline // Sample shading enables per-sample shading to avoid shader aliasing and smooth out e.g. high frequency texture maps // Note: This will trade performance for are more stable image // Enable per-sample shading (instead of per-fragment) multisampleState.sampleShadingEnable = VK_TRUE; // Minimum fraction for sample shading multisampleState.minSampleShading = 0.25f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.MSAASampleShading)); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData))); // Map persistent VK_CHECK_RESULT(uniformBuffer.map()); } void updateUniformBuffers() { uniformData.projection = camera.matrices.perspective; uniformData.model = camera.matrices.view; memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData)); } // Select the highest sample count usable by the platform // In a realworld application, this would be a user setting instead VkSampleCountFlagBits getMaxAvailableSampleCount() { VkSampleCountFlags supportedSampleCount = std::min(deviceProperties.limits.framebufferColorSampleCounts, deviceProperties.limits.framebufferDepthSampleCounts); std::vector< VkSampleCountFlagBits> possibleSampleCounts { VK_SAMPLE_COUNT_64_BIT, VK_SAMPLE_COUNT_32_BIT, VK_SAMPLE_COUNT_16_BIT, VK_SAMPLE_COUNT_8_BIT, VK_SAMPLE_COUNT_4_BIT, VK_SAMPLE_COUNT_2_BIT }; for (auto& possibleSampleCount : possibleSampleCounts) { if (supportedSampleCount & possibleSampleCount) { return possibleSampleCount; } } return VK_SAMPLE_COUNT_1_BIT; } void prepare() { sampleCount = getMaxAvailableSampleCount(); UIOverlay.rasterizationSamples = sampleCount; VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; updateUniformBuffers(); draw(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (vulkanDevice->features.sampleRateShading) { if (overlay->header("Settings")) { if (overlay->checkBox("Sample rate shading", &useSampleShading)) { buildCommandBuffers(); } } } } }; VULKAN_EXAMPLE_MAIN()