/* * Vulkan Example - Offscreen rendering using a separate framebuffer * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 512 #define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = false; struct { vkTools::VulkanTexture colorMap; } textures; struct { vkMeshLoader::MeshBuffer example; vkMeshLoader::MeshBuffer quad; vkMeshLoader::MeshBuffer plane; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkTools::UniformData vsShared; vkTools::UniformData vsMirror; vkTools::UniformData vsOffScreen; vkTools::UniformData vsDebugQuad; } uniformData; struct UBO { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f); }; struct { UBO vsShared; } ubos; struct { VkPipeline debug; VkPipeline shaded; VkPipeline shadedOffscreen; VkPipeline mirror; } pipelines; struct { VkPipelineLayout textured; VkPipelineLayout shaded; } pipelineLayouts; struct { VkDescriptorSet offscreen; VkDescriptorSet mirror; VkDescriptorSet model; VkDescriptorSet debugQuad; } descriptorSets; struct { VkDescriptorSetLayout textured; VkDescriptorSetLayout shaded; } descriptorSetLayouts; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; VkSampler colorSampler; } offScreenFrameBuf; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; // Semaphore used to synchronize between offscreen and final scene rendering VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; glm::vec3 meshPos = glm::vec3(0.0f, -1.5f, 0.0f); glm::vec3 meshRot = glm::vec3(0.0f); VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -6.0f; rotation = { -2.5f, 0.0f, 0.0f }; cameraPos = { 0.0f, 1.0f, 0.0f }; timerSpeed *= 0.25f; enableTextOverlay = true; title = "Vulkan Example - Offscreen rendering"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Textures textureLoader->destroyTexture(textures.colorMap); vkDestroySampler(device, offScreenFrameBuf.colorSampler, nullptr); // Frame buffer // Color attachment vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipeline(device, pipelines.shaded, nullptr); vkDestroyPipeline(device, pipelines.shadedOffscreen, nullptr); vkDestroyPipeline(device, pipelines.mirror, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.textured, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.shaded, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.shaded, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textured, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.example); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); vkMeshLoader::freeMeshBufferResources(device, &meshes.plane); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.vsShared); vkTools::destroyUniformData(device, &uniformData.vsMirror); vkTools::destroyUniformData(device, &uniformData.vsOffScreen); vkTools::destroyUniformData(device, &uniformData.vsDebugQuad); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroySemaphore(device, offscreenSemaphore, nullptr); } // Setup the offscreen framebuffer for rendering the mirrored scene // The color attachment of this framebuffer will then be used // to sample frame in the fragment shader of the final pass void prepareOffscreenFramebuffer() { offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Find a suitable depth format VkFormat fbDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); // Color attachment VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = fbColorFormat; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // We will sample directly from the color attachment image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image)); vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0)); // Get a primary command buffer for submitting image layout transitions for the framebuffer attachments VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Set the initial layout to shader read instead of attachment // This is done as the render loop does the actualy image layout transitions vkTools::setImageLayout( layoutCmd, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); colorImageView.image = offScreenFrameBuf.color.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view)); // Create sampler to sample from to color attachment // Used to sample in the fragment shader for final rendering VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.colorSampler)); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image)); vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0)); vkTools::setImageLayout( layoutCmd, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); // Submit the command buffer to apply the image memory barrier VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); depthStencilView.image = offScreenFrameBuf.depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view)); VkImageView attachments[2]; attachments[0] = offScreenFrameBuf.color.view; attachments[1] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer)); } // Sets up the command buffer that renders the scene to the offscreen frame buffer void buildOffscreenCommandBuffer() { if (offScreenCmdBuffer == VK_NULL_HANDLE) { offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo)); // Change back layout of the color attachment after sampling in the fragment shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Mirrored scene vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.shaded, 0, 1, &descriptorSets.offscreen, 0, NULL); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shadedOffscreen); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Change layout of the color attachment for sampling in the fragment shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer)); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; if (debugDisplay) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.textured, 0, 1, &descriptorSets.debugQuad, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); } // Scene vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); // Reflection plane vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.textured, 0, 1, &descriptorSets.mirror, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.mirror); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0); // Model vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.shaded, 0, 1, &descriptorSets.model, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/plane.obj", &meshes.plane, vertexLayout, 0.4f); loadMesh(getAssetPath() + "models/chinesedragon.dae", &meshes.example, vertexLayout, 0.3f); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "textures/darkmetal_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); } void generateQuad() { // Setup vertices for a single uv-mapped quad struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; #define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL }, { { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL } }; #undef QUAD_COLOR_NORMAL createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 5); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings; VkDescriptorSetLayoutCreateInfo descriptorLayoutInfo; VkPipelineLayoutCreateInfo pipelineLayoutInfo; // Binding 0 : Vertex shader uniform buffer setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)); // Binding 1 : Fragment shader image sampler setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)); // Binding 2 : Fragment shader image sampler setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2)); // Shaded layouts (only use first layout binding) descriptorLayoutInfo = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.shaded)); pipelineLayoutInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.shaded, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayouts.shaded)); // Textured layouts (use all layout bindings) descriptorLayoutInfo = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.textured)); pipelineLayoutInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textured, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayouts.textured)); } void setupDescriptorSet() { // Mirror plane descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayouts.textured, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.mirror)); // Image descriptor for the offscreen mirror color attachment image VkDescriptorImageInfo texDescriptorMirror = vkTools::initializers::descriptorImageInfo( offScreenFrameBuf.colorSampler, offScreenFrameBuf.color.view, VK_IMAGE_LAYOUT_GENERAL); // Image descriptor for the color map VkDescriptorImageInfo texDescriptorColorMap = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsMirror.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorMirror), // Binding 2 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorColorMap) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Debug quad VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debugQuad)); std::vector debugQuadWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.debugQuad, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsDebugQuad.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.debugQuad, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorMirror) }; vkUpdateDescriptorSets(device, debugQuadWriteDescriptorSets.size(), debugQuadWriteDescriptorSets.data(), 0, NULL); // Shaded descriptor sets allocInfo.pSetLayouts = &descriptorSetLayouts.shaded; // Model // No texture VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model)); std::vector modelWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsShared.descriptor) }; vkUpdateDescriptorSets(device, modelWriteDescriptorSets.size(), modelWriteDescriptorSets.data(), 0, NULL); // Offscreen VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsOffScreen.descriptor) }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.textured, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug)); // Flip culling rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; // Mirror shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/mirror.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/mirror.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.mirror)); // Phong shading pipelines pipelineCreateInfo.layout = pipelineLayouts.shaded; // Scene shaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shaded)); // Offscreen // Flip culling rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shadedOffscreen)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Mesh vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsShared.buffer, &uniformData.vsShared.memory, &uniformData.vsShared.descriptor); // Mirror plane vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsMirror.buffer, &uniformData.vsMirror.memory, &uniformData.vsMirror.descriptor); // Offscreen vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsOffScreen.buffer, &uniformData.vsOffScreen.memory, &uniformData.vsOffScreen.descriptor); // Debug quad vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsDebugQuad.buffer, &uniformData.vsDebugQuad.memory, &uniformData.vsDebugQuad.descriptor); updateUniformBuffers(); updateUniformBufferOffscreen(); } void updateUniformBuffers() { // Mesh ubos.vsShared.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y + meshRot.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsShared.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData)); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsShared.memory); // Mirror ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsMirror.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData)); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsMirror.memory); // Debug quad ubos.vsShared.projection = glm::ortho(4.0f, 0.0f, 0.0f, 4.0f*(float)height / (float)width, -1.0f, 1.0f); ubos.vsShared.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 0.0f)); VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsDebugQuad.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData)); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsDebugQuad.memory); } void updateUniformBufferOffscreen() { ubos.vsShared.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.y + meshRot.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); ubos.vsShared.model = glm::scale(ubos.vsShared.model, glm::vec3(1.0f, -1.0f, 1.0f)); ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsOffScreen.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData)); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsOffScreen.memory); } void draw() { VulkanExampleBase::prepareFrame(); // The scene render command buffer has to wait for the offscreen // rendering to be finished before we can use the framebuffer // color image for sampling during final rendering // To ensure this we use a dedicated offscreen synchronization // semaphore that will be signaled when offscreen renderin // has been finished // This is necessary as an implementation may start both // command buffers at the same time, there is no guarantee // that command buffers will be executed in the order they // have been submitted by the application // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &offScreenCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuad(); loadMeshes(); prepareOffscreenFramebuffer(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); buildOffscreenCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { meshRot.y += frameTimer * 10.0f; updateUniformBuffers(); updateUniformBufferOffscreen(); } } virtual void viewChanged() { updateUniformBuffers(); updateUniformBufferOffscreen(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x44: case GAMEPAD_BUTTON_A: toggleDebugDisplay(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to display offscreen target", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"d\" to display offscreen target", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif } void toggleDebugDisplay() { debugDisplay = !debugDisplay; reBuildCommandBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }