/* * Vulkan Example - Passing vertex attributes using interleaved and separate buffers * * Copyright (C) 2022-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vertexattributes.h" void VulkanExample::loadSceneNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, Node* parent) { Node node{}; // Get the local node matrix // It's either made up from translation, rotation, scale or a 4x4 matrix node.matrix = glm::mat4(1.0f); if (inputNode.translation.size() == 3) { node.matrix = glm::translate(node.matrix, glm::vec3(glm::make_vec3(inputNode.translation.data()))); } if (inputNode.rotation.size() == 4) { glm::quat q = glm::make_quat(inputNode.rotation.data()); node.matrix *= glm::mat4(q); } if (inputNode.scale.size() == 3) { node.matrix = glm::scale(node.matrix, glm::vec3(glm::make_vec3(inputNode.scale.data()))); } if (inputNode.matrix.size() == 16) { node.matrix = glm::make_mat4x4(inputNode.matrix.data()); }; // Load node's children if (inputNode.children.size() > 0) { for (size_t i = 0; i < inputNode.children.size(); i++) { loadSceneNode(input.nodes[inputNode.children[i]], input, &node); } } // If the node contains mesh data, we load vertices and indices from the buffers // In glTF this is done via accessors and buffer views if (inputNode.mesh > -1) { const tinygltf::Mesh mesh = input.meshes[inputNode.mesh]; // Iterate through all primitives of this node's mesh for (size_t i = 0; i < mesh.primitives.size(); i++) { const tinygltf::Primitive& glTFPrimitive = mesh.primitives[i]; uint32_t firstIndex = static_cast(indexBuffer.size()); uint32_t vertexStart = static_cast(vertexBuffer.size()); uint32_t indexCount = 0; // Vertex attributes const float* positionBuffer = nullptr; const float* normalsBuffer = nullptr; const float* texCoordsBuffer = nullptr; const float* tangentsBuffer = nullptr; size_t vertexCount = 0; // Anonymous functions to simplify buffer view access auto getBuffer = [glTFPrimitive, input, &vertexCount](const std::string attributeName, const float* &bufferTarget) { if (glTFPrimitive.attributes.find(attributeName) != glTFPrimitive.attributes.end()) { const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.attributes.find(attributeName)->second]; const tinygltf::BufferView& view = input.bufferViews[accessor.bufferView]; bufferTarget = reinterpret_cast(&(input.buffers[view.buffer].data[accessor.byteOffset + view.byteOffset])); if (attributeName == "POSITION") { vertexCount = accessor.count; } } }; // Get buffer pointers to the vertex attributes used in this sample getBuffer("POSITION", positionBuffer); getBuffer("NORMAL", normalsBuffer); getBuffer("TEXCOORD_0", texCoordsBuffer); getBuffer("TANGENT", tangentsBuffer); // Append attributes to the vertex buffers for (size_t v = 0; v < vertexCount; v++) { // Append interleaved attributes Vertex vert{}; vert.pos = glm::vec4(glm::make_vec3(&positionBuffer[v * 3]), 1.0f); vert.normal = glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f))); vert.uv = texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f); vert.tangent = tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f); vertexBuffer.push_back(vert); // Append separate attributes vertexAttributeBuffers.pos.push_back(glm::make_vec3(&positionBuffer[v * 3])); vertexAttributeBuffers.normal.push_back(glm::normalize(glm::vec3(normalsBuffer ? glm::make_vec3(&normalsBuffer[v * 3]) : glm::vec3(0.0f)))); vertexAttributeBuffers.tangent.push_back(tangentsBuffer ? glm::make_vec4(&tangentsBuffer[v * 4]) : glm::vec4(0.0f)); vertexAttributeBuffers.uv.push_back(texCoordsBuffer ? glm::make_vec2(&texCoordsBuffer[v * 2]) : glm::vec3(0.0f)); } // Indices const tinygltf::Accessor& accessor = input.accessors[glTFPrimitive.indices]; const tinygltf::BufferView& bufferView = input.bufferViews[accessor.bufferView]; const tinygltf::Buffer& buffer = input.buffers[bufferView.buffer]; indexCount += static_cast(accessor.count); // glTF supports different component types of indices switch (accessor.componentType) { case TINYGLTF_PARAMETER_TYPE_UNSIGNED_INT: { const uint32_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_SHORT: { const uint16_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } case TINYGLTF_PARAMETER_TYPE_UNSIGNED_BYTE: { const uint8_t* buf = reinterpret_cast(&buffer.data[accessor.byteOffset + bufferView.byteOffset]); for (size_t index = 0; index < accessor.count; index++) { indexBuffer.push_back(buf[index] + vertexStart); } break; } default: std::cerr << "Index component type " << accessor.componentType << " not supported!" << std::endl; return; } Primitive primitive{}; primitive.firstIndex = firstIndex; primitive.indexCount = indexCount; primitive.materialIndex = glTFPrimitive.material; node.mesh.primitives.push_back(primitive); } } if (parent) { parent->children.push_back(node); } else { nodes.push_back(node); } } VulkanExample::VulkanExample() : VulkanExampleBase() { title = "Separate/interleaved vertex attribute buffers"; camera.type = Camera::CameraType::firstperson; camera.flipY = true; camera.setPosition(glm::vec3(0.0f, 1.0f, 0.0f)); camera.setRotation(glm::vec3(0.0f, -90.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } VulkanExample::~VulkanExample() { if (device) { vkDestroyPipeline(device, pipelines.vertexAttributesInterleaved, nullptr); vkDestroyPipeline(device, pipelines.vertexAttributesSeparate, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.matrices, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textures, nullptr); indices.destroy(); shaderData.buffer.destroy(); separateVertexBuffers.normal.destroy(); separateVertexBuffers.pos.destroy(); separateVertexBuffers.tangent.destroy(); separateVertexBuffers.uv.destroy(); interleavedVertexBuffer.destroy(); for (Image image : scene.images) { vkDestroyImageView(vulkanDevice->logicalDevice, image.texture.view, nullptr); vkDestroyImage(vulkanDevice->logicalDevice, image.texture.image, nullptr); vkDestroySampler(vulkanDevice->logicalDevice, image.texture.sampler, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, image.texture.deviceMemory, nullptr); } } } void VulkanExample::getEnabledFeatures() { enabledFeatures.samplerAnisotropy = deviceFeatures.samplerAnisotropy; } void VulkanExample::drawSceneNode(VkCommandBuffer commandBuffer, Node node) { if (node.mesh.primitives.size() > 0) { PushConstBlock pushConstBlock; glm::mat4 nodeMatrix = node.matrix; Node* currentParent = node.parent; while (currentParent) { nodeMatrix = currentParent->matrix * nodeMatrix; currentParent = currentParent->parent; } for (Primitive& primitive : node.mesh.primitives) { if (primitive.indexCount > 0) { Material& material = scene.materials[primitive.materialIndex]; pushConstBlock.nodeMatrix = nodeMatrix; pushConstBlock.alphaMask = (material.alphaMode == "MASK"); pushConstBlock.alphaMaskCutoff = material.alphaCutOff; vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstBlock), &pushConstBlock); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 1, 1, &material.descriptorSet, 0, nullptr); vkCmdDrawIndexed(commandBuffer, primitive.indexCount, 1, primitive.firstIndex, 0, 0); } } } for (auto& child : node.children) { drawSceneNode(commandBuffer, child); } } void VulkanExample::buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f } };; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; const VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); const VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Select the separate or interleaved vertex binding pipeline vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, vertexAttributeSettings == VertexAttributeSettings::separate ? pipelines.vertexAttributesSeparate : pipelines.vertexAttributesInterleaved); // Bind scene matrices descriptor to set 0 vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); // Use the same index buffer, no matter how vertex attributes are passed vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buffer, 0, VK_INDEX_TYPE_UINT32); if (vertexAttributeSettings == VertexAttributeSettings::separate) { // Using separate vertex attribute bindings requires binding multiple attribute buffers VkDeviceSize offsets[4] = { 0, 0, 0, 0 }; std::array buffers = { separateVertexBuffers.pos.buffer, separateVertexBuffers.normal.buffer, separateVertexBuffers.uv.buffer, separateVertexBuffers.tangent.buffer }; vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, static_cast(buffers.size()), buffers.data(), offsets); } else { // Using interleaved attribute bindings only requires one buffer to be bound VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &interleavedVertexBuffer.buffer, offsets); } // Render all nodes starting at top-level for (auto& node : nodes) { drawSceneNode(drawCmdBuffers[i], node); } drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void VulkanExample::loadglTFFile(std::string filename) { tinygltf::Model glTFInput; tinygltf::TinyGLTF gltfContext; std::string error, warning; this->device = device; #if defined(__ANDROID__) // On Android all assets are packed with the apk in a compressed form, so we need to open them using the asset manager // We let tinygltf handle this, by passing the asset manager of our app tinygltf::asset_manager = androidApp->activity->assetManager; #endif bool fileLoaded = gltfContext.LoadASCIIFromFile(&glTFInput, &error, &warning, filename); size_t pos = filename.find_last_of('/'); std::string path = filename.substr(0, pos); if (!fileLoaded) { vks::tools::exitFatal("Could not open the glTF file.\n\nMake sure the assets submodule has been checked out and is up-to-date.", -1); return; } // Load images scene.images.resize(glTFInput.images.size()); for (size_t i = 0; i < glTFInput.images.size(); i++) { tinygltf::Image& glTFImage = glTFInput.images[i]; scene.images[i].texture.loadFromFile(path + "/" + glTFImage.uri, VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); } // Load textures scene.textures.resize(glTFInput.textures.size()); for (size_t i = 0; i < glTFInput.textures.size(); i++) { scene.textures[i].imageIndex = glTFInput.textures[i].source; } // Load materials scene.materials.resize(glTFInput.materials.size()); for (size_t i = 0; i < glTFInput.materials.size(); i++) { // We only read the most basic properties required for our sample tinygltf::Material glTFMaterial = glTFInput.materials[i]; // Get the base color factor if (glTFMaterial.values.find("baseColorFactor") != glTFMaterial.values.end()) { scene.materials[i].baseColorFactor = glm::make_vec4(glTFMaterial.values["baseColorFactor"].ColorFactor().data()); } // Get base color texture index if (glTFMaterial.values.find("baseColorTexture") != glTFMaterial.values.end()) { scene.materials[i].baseColorTextureIndex = glTFMaterial.values["baseColorTexture"].TextureIndex(); } // Get the normal map texture index if (glTFMaterial.additionalValues.find("normalTexture") != glTFMaterial.additionalValues.end()) { scene.materials[i].normalTextureIndex = glTFMaterial.additionalValues["normalTexture"].TextureIndex(); } // Get some additional material parameters that are used in this sample scene.materials[i].alphaMode = glTFMaterial.alphaMode; scene.materials[i].alphaCutOff = (float)glTFMaterial.alphaCutoff; } // Load nodes const tinygltf::Scene& scene = glTFInput.scenes[0]; for (size_t i = 0; i < scene.nodes.size(); i++) { const tinygltf::Node node = glTFInput.nodes[scene.nodes[i]]; loadSceneNode(node, glTFInput, nullptr); } uploadVertexData(); } void VulkanExample::uploadVertexData() { // Upload vertex and index buffers // Anonymous functions to simplify buffer creation // Create a staging buffer used as a source for copies auto createStagingBuffer = [this](vks::Buffer& buffer, void* data, VkDeviceSize size) { VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &buffer, size, data)); }; // Create a device local buffer used as a target for copies auto createDeviceBuffer = [this](vks::Buffer& buffer, VkDeviceSize size, VkBufferUsageFlags usageFlags = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT) { VK_CHECK_RESULT(vulkanDevice->createBuffer(usageFlags | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &buffer, size)); }; VkCommandBuffer copyCmd; VkBufferCopy copyRegion{}; /* Interleaved vertex attributes We create one single buffer containing the interleaved vertex attributes */ size_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); vks::Buffer vertexStaging; createStagingBuffer(vertexStaging, vertexBuffer.data(), vertexBufferSize); createDeviceBuffer(interleavedVertexBuffer, vertexStaging.size); // Copy data from staging buffer (host) do device local buffer (gpu) copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); copyRegion.size = vertexBufferSize; vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, interleavedVertexBuffer.buffer, 1, ©Region); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); vertexStaging.destroy(); /* Separate vertex attributes We create multiple separate buffers for each of the vertex attributes (position, normals, etc.) */ std::array stagingBuffers; createStagingBuffer(stagingBuffers[0], vertexAttributeBuffers.pos.data(), vertexAttributeBuffers.pos.size() * sizeof(vertexAttributeBuffers.pos[0])); createStagingBuffer(stagingBuffers[1], vertexAttributeBuffers.normal.data(), vertexAttributeBuffers.normal.size() * sizeof(vertexAttributeBuffers.normal[0])); createStagingBuffer(stagingBuffers[2], vertexAttributeBuffers.uv.data(), vertexAttributeBuffers.uv.size() * sizeof(vertexAttributeBuffers.uv[0])); createStagingBuffer(stagingBuffers[3], vertexAttributeBuffers.tangent.data(), vertexAttributeBuffers.tangent.size() * sizeof(vertexAttributeBuffers.tangent[0])); createDeviceBuffer(separateVertexBuffers.pos, stagingBuffers[0].size); createDeviceBuffer(separateVertexBuffers.normal, stagingBuffers[1].size); createDeviceBuffer(separateVertexBuffers.uv, stagingBuffers[2].size); createDeviceBuffer(separateVertexBuffers.tangent, stagingBuffers[3].size); // Stage std::vector attributeBuffers = { separateVertexBuffers.pos, separateVertexBuffers.normal, separateVertexBuffers.uv, separateVertexBuffers.tangent, }; // Copy data from staging buffer (host) do device local buffer (gpu) copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); for (size_t i = 0; i < attributeBuffers.size(); i++) { copyRegion.size = attributeBuffers[i].size; vkCmdCopyBuffer(copyCmd, stagingBuffers[i].buffer, attributeBuffers[i].buffer, 1, ©Region); } vulkanDevice->flushCommandBuffer(copyCmd, queue, true); for (size_t i = 0; i < 4; i++) { stagingBuffers[i].destroy(); } /* Index buffer The index buffer is always the same, no matter how we pass the vertex attributes */ size_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); vks::Buffer indexStaging; createStagingBuffer(indexStaging, indexBuffer.data(), indexBufferSize); createDeviceBuffer(indices, indexStaging.size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT); // Copy data from staging buffer (host) do device local buffer (gpu) copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); copyRegion.size = indexBufferSize; vkCmdCopyBuffer(copyCmd, indexStaging.buffer, indices.buffer, 1, ©Region); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); // Free staging resources indexStaging.destroy(); } void VulkanExample::loadAssets() { loadglTFFile(getAssetPath() + "models/sponza/sponza.gltf"); } void VulkanExample::setupDescriptors() { // One ubo to pass dynamic data to the shader // Two combined image samplers per material as each material uses color and normal maps std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(scene.materials.size()) * 2), }; // One set for matrices and one per model image/texture const uint32_t maxSetCount = static_cast(scene.images.size()) + 1; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, maxSetCount); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor set layout for passing matrices std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0) }; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.matrices)); // Descriptor set layout for passing material textures setLayoutBindings = { // Color map vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), // Normal map vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; descriptorSetLayoutCI.pBindings = setLayoutBindings.data(); descriptorSetLayoutCI.bindingCount = 2; VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayouts.textures)); // Pipeline layout using both descriptor sets (set 0 = matrices, set 1 = material) std::array setLayouts = { descriptorSetLayouts.matrices, descriptorSetLayouts.textures }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); // We will use push constants to push the local matrices of a primitive to the vertex shader VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushConstBlock), 0); // Push constant ranges are part of the pipeline layout pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); // Descriptor set for scene matrices VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.matrices, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &shaderData.buffer.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); // Descriptor sets for the materials for (auto& material : scene.materials) { const VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.textures, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &material.descriptorSet)); VkDescriptorImageInfo colorMap = scene.images[material.baseColorTextureIndex].texture.descriptor; VkDescriptorImageInfo normalMap = scene.images[material.normalTextureIndex].texture.descriptor; std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &colorMap), vks::initializers::writeDescriptorSet(material.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &normalMap), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } } void VulkanExample::preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentStateCI = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentStateCI); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); const std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pVertexInputState = &vertexInputStateCI; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); shaderStages[0] = loadShader(getShadersPath() + "vertexattributes/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "vertexattributes/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Interleaved vertex attributes // One Binding (one buffer) and multiple attributes const std::vector vertexInputBindingsInterleaved = { { 0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX }, }; const std::vector vertexInputAttributesInterleaved = { { 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos) }, { 1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal) }, { 2, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv) }, { 3, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Vertex, tangent) }, }; vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsInterleaved, vertexInputAttributesInterleaved); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesInterleaved)); // Separate vertex attribute // Multiple bindings (for each attribute buffer) and multiple attribues const std::vector vertexInputBindingsSeparate = { { 0, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX }, { 1, sizeof(glm::vec3), VK_VERTEX_INPUT_RATE_VERTEX }, { 2, sizeof(glm::vec2), VK_VERTEX_INPUT_RATE_VERTEX }, { 3, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX }, }; const std::vector vertexInputAttributesSeparate = { { 0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0 }, { 1, 1, VK_FORMAT_R32G32B32_SFLOAT, 0 }, { 2, 2, VK_FORMAT_R32G32_SFLOAT, 0 }, { 3, 3, VK_FORMAT_R32G32B32A32_SFLOAT, 0 }, }; vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(vertexInputBindingsSeparate, vertexInputAttributesSeparate); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.vertexAttributesSeparate)); } void VulkanExample::prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &shaderData.buffer, sizeof(shaderData.values))); VK_CHECK_RESULT(shaderData.buffer.map()); updateUniformBuffers(); } void VulkanExample::updateUniformBuffers() { shaderData.values.projection = camera.matrices.perspective; shaderData.values.view = camera.matrices.view; shaderData.values.viewPos = camera.viewPos; memcpy(shaderData.buffer.mapped, &shaderData.values, sizeof(shaderData.values)); } void VulkanExample::prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void VulkanExample::render() { updateUniformBuffers(); renderFrame(); } void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay) { if (overlay->header("Vertex buffer attributes")) { bool interleaved = (vertexAttributeSettings == VertexAttributeSettings::interleaved); bool separate = (vertexAttributeSettings == VertexAttributeSettings::separate); if (overlay->radioButton("Interleaved", interleaved)) { vertexAttributeSettings = VertexAttributeSettings::interleaved; buildCommandBuffers(); } if (overlay->radioButton("Separate", separate)) { vertexAttributeSettings = VertexAttributeSettings::separate; buildCommandBuffers(); } } } VULKAN_EXAMPLE_MAIN()