/* * Vulkan Example - Omni directional shadows using a dynamic cube map * * Copyright (C) by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 1024 #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R32_SFLOAT class VulkanExample : public VulkanExampleBase { public: bool displayCubeMap = false; float zNear = 0.1f; float zFar = 1024.0f; struct { vkglTF::Model scene; vkglTF::Model debugcube; } models; struct { vks::Buffer scene; vks::Buffer offscreen; } uniformBuffers; struct { glm::mat4 projection; glm::mat4 model; } uboVSquad; glm::vec4 lightPos = glm::vec4(0.0f, -2.5f, 0.0f, 1.0); struct UBO { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos; }; UBO uboVSscene, uboOffscreenVS; struct { VkPipeline scene; VkPipeline offscreen; VkPipeline cubemapDisplay; } pipelines; struct { VkPipelineLayout scene; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet scene; VkDescriptorSet offscreen; } descriptorSets; VkDescriptorSetLayout descriptorSetLayout; vks::Texture shadowCubeMap; std::array shadowCubeMapFaceImageViews; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct OffscreenPass { int32_t width, height; std::array frameBuffers; FrameBufferAttachment depth; VkRenderPass renderPass; VkSampler sampler; VkDescriptorImageInfo descriptor; } offscreenPass; VkFormat fbDepthFormat; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Point light shadows (cubemap)"; camera.type = Camera::CameraType::lookat; camera.setPerspective(45.0f, (float)width / (float)height, zNear, zFar); camera.setRotation(glm::vec3(-20.5f, -673.0f, 0.0f)); camera.setPosition(glm::vec3(0.0f, 0.5f, -15.0f)); timerSpeed *= 0.5f; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Cube map for (uint32_t i = 0; i < 6; i++) { vkDestroyImageView(device, shadowCubeMapFaceImageViews[i], nullptr); } vkDestroyImageView(device, shadowCubeMap.view, nullptr); vkDestroyImage(device, shadowCubeMap.image, nullptr); vkDestroySampler(device, shadowCubeMap.sampler, nullptr); vkFreeMemory(device, shadowCubeMap.deviceMemory, nullptr); // Depth attachment vkDestroyImageView(device, offscreenPass.depth.view, nullptr); vkDestroyImage(device, offscreenPass.depth.image, nullptr); vkFreeMemory(device, offscreenPass.depth.mem, nullptr); for (uint32_t i = 0; i < 6; i++) { vkDestroyFramebuffer(device, offscreenPass.frameBuffers[i], nullptr); } vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr); // Pipelines vkDestroyPipeline(device, pipelines.scene, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.cubemapDisplay, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Uniform buffers uniformBuffers.offscreen.destroy(); uniformBuffers.scene.destroy(); } void prepareCubeMap() { shadowCubeMap.width = TEX_DIM; shadowCubeMap.height = TEX_DIM; // 32 bit float format for higher precision VkFormat format = VK_FORMAT_R32_SFLOAT; // Cube map image description VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { shadowCubeMap.width, shadowCubeMap.height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 6; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Create cube map image VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &shadowCubeMap.image)); vkGetImageMemoryRequirements(device, shadowCubeMap.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &shadowCubeMap.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, shadowCubeMap.image, shadowCubeMap.deviceMemory, 0)); // Image barrier for optimal image (target) VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = 1; subresourceRange.layerCount = 6; vks::tools::setImageLayout( layoutCmd, shadowCubeMap.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = TEX_FILTER; sampler.minFilter = TEX_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 1.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &shadowCubeMap.sampler)); // Create image view VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.subresourceRange.layerCount = 6; view.image = shadowCubeMap.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &shadowCubeMap.view)); view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.subresourceRange.layerCount = 1; view.image = shadowCubeMap.image; for (uint32_t i = 0; i < 6; i++) { view.subresourceRange.baseArrayLayer = i; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &shadowCubeMapFaceImageViews[i])); } } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // copied to the different cube map faces void prepareOffscreenFramebuffer() { offscreenPass.width = FB_DIM; offscreenPass.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Color attachment VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = fbColorFormat; imageCreateInfo.extent.width = offscreenPass.width; imageCreateInfo.extent.height = offscreenPass.height; imageCreateInfo.extent.depth = 1; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // Image of the framebuffer is blit source imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VkCommandBuffer layoutCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Depth stencil attachment imageCreateInfo.format = fbDepthFormat; imageCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (fbDepthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) depthStencilView.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreenPass.depth.image)); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0)); vks::tools::setImageLayout( layoutCmd, offscreenPass.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); vulkanDevice->flushCommandBuffer(layoutCmd, queue, true); depthStencilView.image = offscreenPass.depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view)); VkImageView attachments[2]; attachments[1] = offscreenPass.depth.view; VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = offscreenPass.renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offscreenPass.width; fbufCreateInfo.height = offscreenPass.height; fbufCreateInfo.layers = 1; for (uint32_t i = 0; i < 6; i++) { attachments[0] = shadowCubeMapFaceImageViews[i]; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffers[i])); } } // Updates a single cube map face // Renders the scene with face's view directly to the cubemap layer `faceIndex` // Uses push constants for quick update of view matrix for the current cube map face void updateCubeFace(uint32_t faceIndex, VkCommandBuffer commandBuffer) { VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); // Reuse render pass from example pass renderPassBeginInfo.renderPass = offscreenPass.renderPass; renderPassBeginInfo.framebuffer = offscreenPass.frameBuffers[faceIndex]; renderPassBeginInfo.renderArea.extent.width = offscreenPass.width; renderPassBeginInfo.renderArea.extent.height = offscreenPass.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; // Update view matrix via push constant glm::mat4 viewMatrix = glm::mat4(1.0f); switch (faceIndex) { case 0: // POSITIVE_X viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)); viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 1: // NEGATIVE_X viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)); viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 2: // POSITIVE_Y viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 3: // NEGATIVE_Y viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 4: // POSITIVE_Z viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 5: // NEGATIVE_Z viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)); break; } // Render scene from cube face's point of view vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update shader push constant block // Contains current face view matrix vkCmdPushConstants( commandBuffer, pipelineLayouts.offscreen, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &viewMatrix); vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); models.scene.draw(commandBuffer); vkCmdEndRenderPass(commandBuffer); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); /* Generate shadow cube maps using one render pass per face */ { VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); for (uint32_t face = 0; face < 6; face++) { updateCubeFace(face, drawCmdBuffers[i]); } } /* Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies */ /* Scene rendering with applied shadow map */ { VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = frameBuffers[i]; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL); if (displayCubeMap) { // Display all six sides of the shadow cube map // Note: Visualization of the different faces is done in the fragment shader, see cubemapdisplay.frag vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubemapDisplay); models.debugcube.draw(drawCmdBuffers[i]); } else { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene); models.scene.draw(drawCmdBuffers[i]); } drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); } VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; models.debugcube.loadFromFile(getAssetPath() + "models/cube.gltf", vulkanDevice, queue, glTFLoadingFlags); models.scene.loadFromFile(getAssetPath() + "models/shadowscene_fire.gltf", vulkanDevice, queue, glTFLoadingFlags); } void setupDescriptorPool() { // Example uses three ubos and two image samplers std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Shared pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler (cube map) vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // 3D scene pipeline layout VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene)); // Offscreen pipeline layout // Push constants for cube map face view matrices VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); // Push constant ranges are part of the pipeline layout pPipelineLayoutCreateInfo.pushConstantRangeCount = 1; pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); } void setupDescriptorSets() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); // 3D scene VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); // Image descriptor for the cube map VkDescriptorImageInfo texDescriptor = vks::initializers::descriptorImageInfo( shadowCubeMap.sampler, shadowCubeMap.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); std::vector sceneDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 1 : Fragment shader shadow sampler vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL); // Offscreen VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor), }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); } // Set up a separate render pass for the offscreen frame buffer // This is necessary as the offscreen frame buffer attachments // use formats different to the ones from the visible frame buffer // and at least the depth one may not be compatible void prepareOffscreenRenderpass() { VkAttachmentDescription osAttachments[2] = {}; // Find a suitable depth format VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); osAttachments[0].format = FB_COLOR_FORMAT; osAttachments[0].samples = VK_SAMPLE_COUNT_1_BIT; osAttachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; osAttachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; osAttachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; osAttachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; osAttachments[0].initialLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; osAttachments[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; // Depth attachment osAttachments[1].format = fbDepthFormat; osAttachments[1].samples = VK_SAMPLE_COUNT_1_BIT; osAttachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; osAttachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; osAttachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; osAttachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; osAttachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; osAttachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorReference; subpass.pDepthStencilAttachment = &depthReference; VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo(); renderPassCreateInfo.attachmentCount = 2; renderPassCreateInfo.pAttachments = osAttachments; renderPassCreateInfo.subpassCount = 1; renderPassCreateInfo.pSubpasses = &subpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass)); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // 3D scene pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.scene, renderPass, 0); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal}); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.scene)); // Offscreen pipeline shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); pipelineCI.layout = pipelineLayouts.offscreen; pipelineCI.renderPass = offscreenPass.renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen)); // Cube map display pipeline shaderStages[0] = loadShader(getShadersPath() + "shadowmappingomni/cubemapdisplay.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "shadowmappingomni/cubemapdisplay.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); pipelineCI.pVertexInputState = &emptyInputState; pipelineCI.layout = pipelineLayouts.scene; pipelineCI.renderPass = renderPass; rasterizationState.cullMode = VK_CULL_MODE_NONE; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.cubemapDisplay)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Offscreen vertex shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(uboOffscreenVS))); // Scene vertex shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(uboVSscene))); // Map persistent VK_CHECK_RESULT(uniformBuffers.offscreen.map()); VK_CHECK_RESULT(uniformBuffers.scene.map()); updateUniformBufferOffscreen(); updateUniformBuffers(); } void updateUniformBuffers() { uboVSscene.projection = camera.matrices.perspective; uboVSscene.view = camera.matrices.view; uboVSscene.model = glm::mat4(1.0f); uboVSscene.lightPos = lightPos; memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene)); } void updateUniformBufferOffscreen() { lightPos.x = sin(glm::radians(timer * 360.0f)) * 0.15f; lightPos.z = cos(glm::radians(timer * 360.0f)) * 0.15f; uboOffscreenVS.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar); uboOffscreenVS.view = glm::mat4(1.0f); uboOffscreenVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z)); uboOffscreenVS.lightPos = lightPos; memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); prepareCubeMap(); setupDescriptorSetLayout(); prepareOffscreenRenderpass(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); prepareOffscreenFramebuffer(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused || camera.updated) { updateUniformBufferOffscreen(); updateUniformBuffers(); } } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->checkBox("Display shadow cube render target", &displayCubeMap)) { buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()