/* * Vulkan Example - Attraction based compute shader particle system * * Updated compute shader by Lukas Bergdoll (https://github.com/Voultapher) * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #if defined(__ANDROID__) // Lower particle count on Android for performance reasons #define PARTICLE_COUNT 128 * 1024 #else #define PARTICLE_COUNT 256 * 1024 #endif class VulkanExample : public VulkanExampleBase { public: float timer = 0.0f; float animStart = 20.0f; bool attachToCursor = false; struct { vks::Texture2D particle; vks::Texture2D gradient; } textures; // SSBO particle declaration struct Particle { glm::vec2 pos; // Particle position glm::vec2 vel; // Particle velocity glm::vec4 gradientPos; // Texture coordinates for the gradient ramp map }; // We use a shader storage buffer object to store the particlces // This is updated by the compute pipeline and displayed as a vertex buffer by the graphics pipeline vks::Buffer storageBuffer; // Resources for the graphics part of the example struct Graphics { uint32_t queueFamilyIndex; // Used to check if compute and graphics queue families differ and require additional barriers VkDescriptorSetLayout descriptorSetLayout; // Particle system rendering shader binding layout VkDescriptorSet descriptorSet; // Particle system rendering shader bindings VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline VkPipeline pipeline; // Particle rendering pipeline VkSemaphore semaphore; // Execution dependency between compute & graphic submission } graphics; // Resources for the compute part of the example struct Compute { uint32_t queueFamilyIndex; // Used to check if compute and graphics queue families differ and require additional barriers VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics) VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics) VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers VkSemaphore semaphore; // Execution dependency between compute & graphic submission VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout VkDescriptorSet descriptorSet; // Compute shader bindings VkPipelineLayout pipelineLayout; // Layout of the compute pipeline VkPipeline pipeline; // Compute pipeline for updating particle positions vks::Buffer uniformBuffer; // Uniform buffer object containing particle system parameters struct UniformData { // Compute shader uniform block object float deltaT; // Frame delta time float destX; // x position of the attractor float destY; // y position of the attractor int32_t particleCount = PARTICLE_COUNT; } uniformData; } compute; VulkanExample() : VulkanExampleBase() { title = "Compute shader particle system"; } ~VulkanExample() { if (device) { // Graphics vkDestroyPipeline(device, graphics.pipeline, nullptr); vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr); vkDestroySemaphore(device, graphics.semaphore, nullptr); // Compute compute.uniformBuffer.destroy(); vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr); vkDestroyPipeline(device, compute.pipeline, nullptr); vkDestroySemaphore(device, compute.semaphore, nullptr); vkDestroyCommandPool(device, compute.commandPool, nullptr); storageBuffer.destroy(); textures.particle.destroy(); textures.gradient.destroy(); } } void loadAssets() { textures.particle.loadFromFile(getAssetPath() + "textures/particle01_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); textures.gradient.loadFromFile(getAssetPath() + "textures/particle_gradient_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Acquire barrier if (graphics.queueFamilyIndex != compute.queueFamilyIndex) { VkBufferMemoryBarrier buffer_barrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, nullptr, 0, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, compute.queueFamilyIndex, graphics.queueFamilyIndex, storageBuffer.buffer, 0, storageBuffer.size }; vkCmdPipelineBarrier( drawCmdBuffers[i], VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, 0, 0, nullptr, 1, &buffer_barrier, 0, nullptr); } // Draw the particle system using the update vertex buffer vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &storageBuffer.buffer, offsets); vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); // Release barrier if (graphics.queueFamilyIndex != compute.queueFamilyIndex) { VkBufferMemoryBarrier buffer_barrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, nullptr, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, graphics.queueFamilyIndex, compute.queueFamilyIndex, storageBuffer.buffer, 0, storageBuffer.size }; vkCmdPipelineBarrier( drawCmdBuffers[i], VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 1, &buffer_barrier, 0, nullptr); } VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void buildComputeCommandBuffer() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo)); // Compute particle movement // Add memory barrier to ensure that the (graphics) vertex shader has fetched attributes before compute starts to write to the buffer if (graphics.queueFamilyIndex != compute.queueFamilyIndex) { VkBufferMemoryBarrier buffer_barrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, nullptr, 0, VK_ACCESS_SHADER_WRITE_BIT, graphics.queueFamilyIndex, compute.queueFamilyIndex, storageBuffer.buffer, 0, storageBuffer.size }; vkCmdPipelineBarrier( compute.commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, nullptr, 1, &buffer_barrier, 0, nullptr); } // Dispatch the compute job vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline); vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0); vkCmdDispatch(compute.commandBuffer, PARTICLE_COUNT / 256, 1, 1); // Add barrier to ensure that compute shader has finished writing to the buffer // Without this the (rendering) vertex shader may display incomplete results (partial data from last frame) if (graphics.queueFamilyIndex != compute.queueFamilyIndex) { VkBufferMemoryBarrier buffer_barrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, nullptr, VK_ACCESS_SHADER_WRITE_BIT, 0, compute.queueFamilyIndex, graphics.queueFamilyIndex, storageBuffer.buffer, 0, storageBuffer.size }; vkCmdPipelineBarrier( compute.commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 1, &buffer_barrier, 0, nullptr); } vkEndCommandBuffer(compute.commandBuffer); } // Setup and fill the compute shader storage buffers containing the particles void prepareStorageBuffers() { std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr)); std::uniform_real_distribution rndDist(-1.0f, 1.0f); // Initial particle positions std::vector particleBuffer(PARTICLE_COUNT); for (auto& particle : particleBuffer) { particle.pos = glm::vec2(rndDist(rndEngine), rndDist(rndEngine)); particle.vel = glm::vec2(0.0f); particle.gradientPos.x = particle.pos.x / 2.0f; } VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle); // Staging // SSBO won't be changed on the host after upload so copy to device local memory vks::Buffer stagingBuffer; vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, particleBuffer.data()); vulkanDevice->createBuffer( // The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &storageBuffer, storageBufferSize); // Copy from staging buffer to storage buffer VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = storageBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, storageBuffer.buffer, 1, ©Region); // Execute a transfer barrier to the compute queue, if necessary if (graphics.queueFamilyIndex != compute.queueFamilyIndex) { VkBufferMemoryBarrier buffer_barrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, nullptr, VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT, 0, graphics.queueFamilyIndex, compute.queueFamilyIndex, storageBuffer.buffer, 0, storageBuffer.size }; vkCmdPipelineBarrier( copyCmd, VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 1, &buffer_barrier, 0, nullptr); } vulkanDevice->flushCommandBuffer(copyCmd, queue, true); stagingBuffer.destroy(); } // The descriptor pool will be shared between graphics and compute void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void prepareGraphics() { prepareStorageBuffers(); prepareUniformBuffers(); // Descriptor set layout std::vector setLayoutBindings = { // Binding 0 : Particle color map vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), // Binding 1 : Particle gradient ramp vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout)); // Descriptor set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet)); std::vector writeDescriptorSets; // Binding 0 : Particle color map writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet( graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.particle.descriptor)); // Binding 1 : Particle gradient ramp writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet( graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.gradient.descriptor)); vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Pipeline layout VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_ALWAYS); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; // Vertex Input state std::vector inputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX) }; std::vector inputAttributes = { // Location 0 : Position vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, pos)), // Location 1 : Velocity (used for color gradient lookup) vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, gradientPos)), }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = static_cast(inputBindings.size()); vertexInputState.pVertexBindingDescriptions = inputBindings.data(); vertexInputState.vertexAttributeDescriptionCount = static_cast(inputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = inputAttributes.data(); shaderStages[0] = loadShader(getShadersPath() + "computeparticles/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "computeparticles/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(graphics.pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertexInputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; // Additive blending blendAttachmentState.colorWriteMask = 0xF; blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline)); // Semaphore for compute & graphics sync VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &graphics.semaphore)); // Signal the semaphore VkSubmitInfo submitInfo = vks::initializers::submitInfo(); submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = &graphics.semaphore; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); } void prepareCompute() { // Create a compute capable device queue // The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute // Depending on the implementation this may result in different queue family indices for graphics and computes, // requiring proper synchronization (see the memory and pipeline barriers) vkGetDeviceQueue(device, compute.queueFamilyIndex, 0, &compute.queue); // Create compute pipeline // Compute pipelines are created separate from graphics pipelines even if they use the same queue (family index) std::vector setLayoutBindings = { // Binding 0 : Particle position storage buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0), // Binding 1 : Uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout)); VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &compute.descriptorSetLayout,1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet)); std::vector computeWriteDescriptorSets = { // Binding 0 : Particle position storage buffer vks::initializers::writeDescriptorSet( compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &storageBuffer.descriptor), // Binding 1 : Uniform buffer vks::initializers::writeDescriptorSet( compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &compute.uniformBuffer.descriptor) }; vkUpdateDescriptorSets(device, static_cast(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL); // Create pipeline VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&compute.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout)); VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0); computePipelineCreateInfo.stage = loadShader(getShadersPath() + "computeparticles/particle.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT); VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline)); // Separate command pool as queue family for compute may be different than graphics VkCommandPoolCreateInfo cmdPoolInfo = {}; cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmdPoolInfo.queueFamilyIndex = compute.queueFamilyIndex; cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool)); // Create a command buffer for compute operations compute.commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, compute.commandPool); // Semaphore for compute & graphics sync VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &compute.semaphore)); // Build a single command buffer containing the compute dispatch commands buildComputeCommandBuffer(); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Compute shader uniform buffer block vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(Compute::UniformData)); // Map for host access VK_CHECK_RESULT(compute.uniformBuffer.map()); updateUniformBuffers(); } void updateUniformBuffers() { compute.uniformData.deltaT = paused ? 0.0f : frameTimer * 2.5f; if (!attachToCursor) { compute.uniformData.destX = sin(glm::radians(timer * 360.0f)) * 0.75f; compute.uniformData.destY = 0.0f; } else { float normalizedMx = (mousePos.x - static_cast(width / 2)) / static_cast(width / 2); float normalizedMy = (mousePos.y - static_cast(height / 2)) / static_cast(height / 2); compute.uniformData.destX = normalizedMx; compute.uniformData.destY = normalizedMy; } memcpy(compute.uniformBuffer.mapped, &compute.uniformData, sizeof(Compute::UniformData)); } void draw() { // Wait for rendering finished VkPipelineStageFlags waitStageMask = VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT; // Submit compute commands VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo(); computeSubmitInfo.commandBufferCount = 1; computeSubmitInfo.pCommandBuffers = &compute.commandBuffer; computeSubmitInfo.waitSemaphoreCount = 1; computeSubmitInfo.pWaitSemaphores = &graphics.semaphore; computeSubmitInfo.pWaitDstStageMask = &waitStageMask; computeSubmitInfo.signalSemaphoreCount = 1; computeSubmitInfo.pSignalSemaphores = &compute.semaphore; VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, VK_NULL_HANDLE)); VulkanExampleBase::prepareFrame(); VkPipelineStageFlags graphicsWaitStageMasks[] = { VK_PIPELINE_STAGE_VERTEX_INPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; VkSemaphore graphicsWaitSemaphores[] = { compute.semaphore, semaphores.presentComplete }; VkSemaphore graphicsSignalSemaphores[] = { graphics.semaphore, semaphores.renderComplete }; // Submit graphics commands submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; submitInfo.waitSemaphoreCount = 2; submitInfo.pWaitSemaphores = graphicsWaitSemaphores; submitInfo.pWaitDstStageMask = graphicsWaitStageMasks; submitInfo.signalSemaphoreCount = 2; submitInfo.pSignalSemaphores = graphicsSignalSemaphores; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); // We will be using the queue family indices to check if graphics and compute queue families differ // If that's the case, we need additional barriers for acquiring and releasing resources graphics.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; compute.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; loadAssets(); setupDescriptorPool(); prepareGraphics(); prepareCompute(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!attachToCursor) { if (animStart > 0.0f) { animStart -= frameTimer * 5.0f; } else if (animStart <= 0.0f) { timer += frameTimer * 0.04f; if (timer > 1.f) timer = 0.f; } } updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { overlay->checkBox("Attach attractor to cursor", &attachToCursor); } } }; VULKAN_EXAMPLE_MAIN()