/* * Vulkan Example - Animated gears using multiple uniform buffers * * See readme.md for details * * Copyright (C) 2015 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkangear.h" int32_t VulkanGear::newVertex(std::vector *vBuffer, float x, float y, float z, const glm::vec3& normal) { Vertex v( glm::vec3(x, y, z), normal, color ); vBuffer->push_back(v); return vBuffer->size() - 1; } void VulkanGear::newFace(std::vector *iBuffer, int a, int b, int c) { iBuffer->push_back(a); iBuffer->push_back(b); iBuffer->push_back(c); } VulkanGear::VulkanGear(VkDevice device, VulkanExampleBase *example) { this->device = device; this->exampleBase = example; } VulkanGear::~VulkanGear() { // Clean up vulkan resources vkDestroyBuffer(device, uniformData.buffer, nullptr); vkFreeMemory(device, uniformData.memory, nullptr); vkDestroyBuffer(device, vertexBuffer.buf, nullptr); vkFreeMemory(device, vertexBuffer.mem, nullptr); vkDestroyBuffer(device, indexBuffer.buf, nullptr); vkFreeMemory(device, indexBuffer.mem, nullptr); } void VulkanGear::generate(float inner_radius, float outer_radius, float width, int teeth, float tooth_depth, glm::vec3 color, glm::vec3 pos, float rotSpeed, float rotOffset) { this->color = color; this->pos = pos; this->rotOffset = rotOffset; this->rotSpeed = rotSpeed; std::vector vBuffer; std::vector iBuffer; int i, j; float r0, r1, r2; float ta, da; float u1, v1, u2, v2, len; float cos_ta, cos_ta_1da, cos_ta_2da, cos_ta_3da, cos_ta_4da; float sin_ta, sin_ta_1da, sin_ta_2da, sin_ta_3da, sin_ta_4da; int32_t ix0, ix1, ix2, ix3, ix4, ix5; r0 = inner_radius; r1 = outer_radius - tooth_depth / 2.0; r2 = outer_radius + tooth_depth / 2.0; da = 2.0 * M_PI / teeth / 4.0; glm::vec3 normal; for (i = 0; i < teeth; i++) { ta = i * 2.0 * M_PI / teeth; // todo : naming cos_ta = cos(ta); cos_ta_1da = cos(ta + da); cos_ta_2da = cos(ta + 2 * da); cos_ta_3da = cos(ta + 3 * da); cos_ta_4da = cos(ta + 4 * da); sin_ta = sin(ta); sin_ta_1da = sin(ta + da); sin_ta_2da = sin(ta + 2 * da); sin_ta_3da = sin(ta + 3 * da); sin_ta_4da = sin(ta + 4 * da); u1 = r2 * cos_ta_1da - r1 * cos_ta; v1 = r2 * sin_ta_1da - r1 * sin_ta; len = sqrt(u1 * u1 + v1 * v1); u1 /= len; v1 /= len; u2 = r1 * cos_ta_3da - r2 * cos_ta_2da; v2 = r1 * sin_ta_3da - r2 * sin_ta_2da; // front face normal = glm::vec3(0.0, 0.0, 1.0); ix0 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, width * 0.5, normal); ix1 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, width * 0.5, normal); ix2 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, width * 0.5, normal); ix3 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal); ix4 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, width * 0.5, normal); ix5 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); newFace(&iBuffer, ix2, ix3, ix4); newFace(&iBuffer, ix3, ix5, ix4); // front sides of teeth normal = glm::vec3(0.0, 0.0, 1.0); ix0 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, width * 0.5, normal); ix1 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, width * 0.5, normal); ix2 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal); ix3 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); // back face normal = glm::vec3(0.0, 0.0, -1.0); ix0 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, -width * 0.5, normal); ix1 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, -width * 0.5, normal); ix2 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal); ix3 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, -width * 0.5, normal); ix4 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, -width * 0.5, normal); ix5 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, -width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); newFace(&iBuffer, ix2, ix3, ix4); newFace(&iBuffer, ix3, ix5, ix4); // back sides of teeth normal = glm::vec3(0.0, 0.0, -1.0); ix0 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal); ix1 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, -width * 0.5, normal); ix2 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, -width * 0.5, normal); ix3 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, -width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); // draw outward faces of teeth normal = glm::vec3(v1, -u1, 0.0); ix0 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, width * 0.5, normal); ix1 = newVertex(&vBuffer, r1 * cos_ta, r1 * sin_ta, -width * 0.5, normal); ix2 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, width * 0.5, normal); ix3 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, -width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); normal = glm::vec3(cos_ta, sin_ta, 0.0); ix0 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, width * 0.5, normal); ix1 = newVertex(&vBuffer, r2 * cos_ta_1da, r2 * sin_ta_1da, -width * 0.5, normal); ix2 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, width * 0.5, normal); ix3 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, -width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); normal = glm::vec3(v2, -u2, 0.0); ix0 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, width * 0.5, normal); ix1 = newVertex(&vBuffer, r2 * cos_ta_2da, r2 * sin_ta_2da, -width * 0.5, normal); ix2 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal); ix3 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); normal = glm::vec3(cos_ta, sin_ta, 0.0); ix0 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, width * 0.5, normal); ix1 = newVertex(&vBuffer, r1 * cos_ta_3da, r1 * sin_ta_3da, -width * 0.5, normal); ix2 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, width * 0.5, normal); ix3 = newVertex(&vBuffer, r1 * cos_ta_4da, r1 * sin_ta_4da, -width * 0.5, normal); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); // draw inside radius cylinder ix0 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, -width * 0.5, glm::vec3(-cos_ta, -sin_ta, 0.0)); ix1 = newVertex(&vBuffer, r0 * cos_ta, r0 * sin_ta, width * 0.5, glm::vec3(-cos_ta, -sin_ta, 0.0)); ix2 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, -width * 0.5, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0)); ix3 = newVertex(&vBuffer, r0 * cos_ta_4da, r0 * sin_ta_4da, width * 0.5, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0)); newFace(&iBuffer, ix0, ix1, ix2); newFace(&iBuffer, ix1, ix3, ix2); } int vertexBufferSize = vBuffer.size() * sizeof(Vertex); int indexBufferSize = iBuffer.size() * sizeof(uint32_t); VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkResult err; void *data; // Generate vertex buffer VkBufferCreateInfo vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize); err = vkCreateBuffer(device, &vBufferInfo, nullptr, &vertexBuffer.buf); assert(!err); vkGetBufferMemoryRequirements(device, vertexBuffer.buf, &memReqs); memAlloc.allocationSize = memReqs.size; exampleBase->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &vertexBuffer.mem); assert(!err); err = vkMapMemory(device, vertexBuffer.mem, 0, vertexBufferSize, 0, &data); assert(!err); memcpy(data, vBuffer.data(), vertexBufferSize); vkUnmapMemory(device, vertexBuffer.mem); err = vkBindBufferMemory(device, vertexBuffer.buf, vertexBuffer.mem, 0); assert(!err); // Generate index buffer VkBufferCreateInfo iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize); err = vkCreateBuffer(device, &iBufferInfo, nullptr, &indexBuffer.buf); assert(!err); vkGetBufferMemoryRequirements(device, indexBuffer.buf, &memReqs); memAlloc.allocationSize = memReqs.size; exampleBase->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &indexBuffer.mem); assert(!err); err = vkMapMemory(device, indexBuffer.mem, 0, indexBufferSize, 0, &data); assert(!err); memcpy(data, iBuffer.data(), indexBufferSize); vkUnmapMemory(device, indexBuffer.mem); err = vkBindBufferMemory(device, indexBuffer.buf, indexBuffer.mem, 0); assert(!err); indexBuffer.count = iBuffer.size(); prepareUniformBuffer(); } void VulkanGear::draw(VkCommandBuffer cmdbuffer, VkPipelineLayout pipelineLayout) { VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(cmdbuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindVertexBuffers(cmdbuffer, 0, 1, &vertexBuffer.buf, offsets); vkCmdBindIndexBuffer(cmdbuffer, indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(cmdbuffer, indexBuffer.count, 1, 0, 0, 1); } void VulkanGear::updateUniformBuffer(glm::mat4 perspective, glm::vec3 rotation, float zoom, float timer) { ubo.projection = perspective; ubo.view = glm::lookAt( glm::vec3(0, 0, -zoom), glm::vec3(-1.0, -1.5, 0), glm::vec3(0, 1, 0) ); ubo.view = glm::rotate(ubo.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubo.view = glm::rotate(ubo.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubo.model = glm::mat4(); ubo.model = glm::translate(ubo.model, pos); rotation.z = (rotSpeed * timer) + rotOffset; ubo.model = glm::rotate(ubo.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); ubo.normal = glm::inverseTranspose(ubo.view * ubo.model); //ubo.lightPos = lightPos; ubo.lightPos = glm::vec3(0.0f, 0.0f, 2.5f); ubo.lightPos.x = sin(glm::radians(timer)) * 8.0f; ubo.lightPos.z = cos(glm::radians(timer)) * 8.0f; uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.memory, 0, sizeof(ubo), 0, (void **)&pData); assert(!err); memcpy(pData, &ubo, sizeof(ubo)); vkUnmapMemory(device, uniformData.memory); } void VulkanGear::setupDescriptorSet(VkDescriptorPool pool, VkDescriptorSetLayout descriptorSetLayout) { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( pool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); // Binding 0 : Vertex shader uniform buffer VkWriteDescriptorSet writeDescriptorSet = vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, NULL); } void VulkanGear::prepareUniformBuffer() { VkResult err; // Vertex shader uniform buffer block VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(ubo)); err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformData.buffer); assert(!err); vkGetBufferMemoryRequirements(device, uniformData.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; exampleBase->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformData.memory); assert(!err); err = vkBindBufferMemory(device, uniformData.buffer, uniformData.memory, 0); assert(!err); uniformData.descriptor.buffer = uniformData.buffer; uniformData.descriptor.offset = 0; uniformData.descriptor.range = sizeof(ubo); uniformData.allocSize = allocInfo.allocationSize; }