/* Copyright (c) 2025, Sascha Willems * * SPDX-License-Identifier: MIT * */ struct Vertex { float3 pos; float2 uv; }; struct Triangle { Vertex vertices[3]; float2 uv; }; struct BufferReferences { // Pointer to the buffer with the scene's MVP matrix ConstBufferPointer vertices; // Pointer to the buffer for the data for each model ConstBufferPointer indices; }; [[vk::push_constant]] BufferReferences bufferReferences; struct Payload { float3 hitValue; }; struct UBOCameraProperties { float4x4 viewInverse; float4x4 projInverse; } RaytracingAccelerationStructure accelStruct; RWTexture2D image; ConstantBuffer cam; Sampler2D samplerColor; struct Attributes { float2 bary; }; Triangle unpackTriangle(uint index, Attributes attribs) { Triangle tri; const uint triIndex = index * 3; const uint vertexSize = 32; // Unpack vertices // Data is packed as float4 so we can map to the glTF vertex structure from the host side for (uint i = 0; i < 3; i++) { const uint offset = bufferReferences.indices[triIndex + i] * (vertexSize / 16); float4 d0 = bufferReferences.vertices[offset + 0]; // pos.xyz, n.x float4 d1 = bufferReferences.vertices[offset + 1]; // n.yz, uv.xy tri.vertices[i].pos = d0.xyz; tri.vertices[i].uv = d1.zw; } // Calculate values at barycentric coordinates float3 barycentricCoords = float3(1.0f - attribs.bary.x - attribs.bary.y, attribs.bary.x, attribs.bary.y); tri.uv = tri.vertices[0].uv * barycentricCoords.x + tri.vertices[1].uv * barycentricCoords.y + tri.vertices[2].uv * barycentricCoords.z; return tri; } [shader("raygeneration")] void raygenerationMain() { uint3 LaunchID = DispatchRaysIndex(); uint3 LaunchSize = DispatchRaysDimensions(); const float2 pixelCenter = float2(LaunchID.xy) + float2(0.5, 0.5); const float2 inUV = pixelCenter / float2(LaunchSize.xy); float2 d = inUV * 2.0 - 1.0; float4 target = mul(cam.projInverse, float4(d.x, d.y, 1, 1)); RayDesc rayDesc; rayDesc.Origin = mul(cam.viewInverse, float4(0, 0, 0, 1)).xyz; rayDesc.Direction = mul(cam.viewInverse, float4(normalize(target.xyz), 0)).xyz; rayDesc.TMin = 0.001; rayDesc.TMax = 10000.0; Payload payload; TraceRay(accelStruct, RAY_FLAG_NONE, 0xff, 0, 0, 0, rayDesc, payload); image[int2(LaunchID.xy)] = float4(payload.hitValue, 0.0); } [shader("closesthit")] void closesthitMain(inout Payload payload, in Attributes attribs) { Triangle tri = unpackTriangle(PrimitiveIndex(), attribs); // Fetch the color for this ray hit from the texture at the current uv coordinates float4 color = samplerColor.SampleLevel(tri.uv, 0.0); payload.hitValue = color.rgb; } [shader("anyhit")] void anyhitMain(inout Payload payload, in Attributes attribs) { Triangle tri = unpackTriangle(PrimitiveIndex(), attribs); float4 color = samplerColor.SampleLevel(tri.uv, 0.0); // If the alpha value of the texture at the current UV coordinates is below a given threshold, we'll ignore this intersection // That way ray traversal will be stopped and the miss shader will be invoked if (color.a < 0.9) { IgnoreHit(); } } [shader("miss")] void missMain(inout Payload payload) { payload.hitValue = float3(0.0, 0.0, 0.2); }